scholarly journals Examination of Multiband IFA for UHF and SHF Channel Applications

Author(s):  
Erfan Rohadi ◽  
Amalia Amalia ◽  
Indrazno Siradjuddin ◽  
Ferdian Ronilaya ◽  
Rosa Andrie Asmara

The Inverted F Antenna (IFA) with the parasitic element on a finite conducting plane is proposed in the range frequency of 0.1 to 5.5 GHz and its characteristics are analyzed numerically. In this research, the parasitic element and the main IFA are investigated to obtain the resonance frequency for multiband operation purposes. The parasitic element is placed beneath adjusted to the main IFA to derive more frequency bands. The distance between the parasitic element and main horizontal element extremely affects the performance of the IFA. It is found that when the parasitic element is located closer to the conducting plane, this element is coupled by the current on the conducting plane. Consequently, the return loss bandwidth becomes narrower. Therefore, the gain of the proposed IFA becomes a bit higher. The antenna gain is about 8.21 dB at band #3 (λ1.747), 7.43 dB at band #5 (λ2.967) and 8.82 dB at band #6 (λ4.023). This occurs when the calculation condition is antenna height h1 = 23 mm, h2 = 21 mm, horizontal antenna elements L = 173.2 mm, L1 = 140.9 mm and Lp = 152 mm, shorted element Ls = 30.7 mm, the distance between parasitic element and shorted element pyl = 5 mm. While the size of conducting plane is considered pxp+pxm by pyp+pym as 57.5+57.5 mm by 200+50 mm. In the numerical analysis, the electromagnetic simulator WIPL-D based on Method of Moment is used. The results show that the proposed IFA has UHF and SHF channel receiver which are suitable for advanced wireless service (band #3), mobile phones, Bluetooth, maritime service, radiolocation service (band #5) and radars, mobile phones, commercial wireless LAN (band #6).

2018 ◽  
Vol 7 (4) ◽  
pp. 587-592
Author(s):  
K. Thana Pakkiam ◽  
K. Baskaran ◽  
J. S. Mandeep

In this paper, a simple mail box design of a dual band microstrip patch antenna, is proposed, designed, fabricated and measured for wireless LAN communications. The proposed antenna is designed using the TLC 30 (TACONIC) substrate, with a relative permittivity of 4.3 and substrate height of 1.6mm. It is designed to operate at 2.44 GHz and 5. 30 GHz respectively. The proposed antenna is the size of 31mm x 34mm x1.6mm and is incited by a 50 Ω micro strip feed line. The characteristics of the antenna are designed and the performance of the modelled antenna is evaluated using CST Microwave Studio. The return loss, radiation patterns and peak antenna gain of 6.5 dBi for frequency 2.44 GHz and 6.2 dBi for 5.30 GHz is separately and successfully plotted. The fabricated prototype exhibits an agreement between the measured and simulated return loss.


2020 ◽  
Vol 35 (8) ◽  
pp. 908-915
Author(s):  
Ming Yang ◽  
Yu-Fa Sun ◽  
Tong-Qing Liao

A novel multi-mode narrow-frame antenna is presented for 4G/5G metal-rimmed mobile phones in this paper. The proposed antenna is constituted by a monopole antenna and a coupling strip, which is printed on FR4 substrate with thickness of 0.8 mm. The overall area occupied by the antenna is only 60 × 10.4 mm2, which can be used as a promising narrow-frame antenna. The simulated results shows that the return loss of the antenna can provide four operating bandwidths of 822– 961 (band 1), 1697–3075 (band 2), 3280–3835 (band 3) and 4475–5050 MHz (band 4), which respectively cover 824–960, 1710–2690, 3300–3600 and 4800–5000 MHz in 4G/5G communication systems. In order to verify the accuracy of theoretical analysis and simulated results, the proposed antenna is fabricated and measured. The experimental results are basically consistent with the simulated results, suggesting that the presented antenna has attractive performance for mobile phones.


2015 ◽  
Vol 2015 ◽  
pp. 1-8
Author(s):  
Majid Rafiee ◽  
Mohd Fadzil bin Ain ◽  
Aftanasar Md. Shahar

A novel single CPW-fed Quasi-Planar Inverted-F Antenna (PIFA) using quasi-lumped elements is developed for mobile communication handheld terminals operating at 2.6 GHz. The antenna is composed of an inductor covered by a set of interdigital and parasitic capacitors. The proposed antenna achieves a measured bandwidth of 11% for return loss with the antenna gain of about 4 dBi. The antenna is designed in single layer (zero height) which is appropriate to be used in thin devices where a small room is considered for the antenna. The proposed antenna is suitable for use in Long Term Evolution band 7. The operating frequency of introduced antenna depends on the number of interdigital fingers and inductor length rather than the total resonator patch only, so that the operating frequency can be altered while the total patch size remains unchanged. The calculated operating frequency is confirmed by simulation and measurement. Also the dipole-like simulated radiation pattern is confirmed by measurement.


2015 ◽  
Vol 12 (2) ◽  
pp. 197-204 ◽  
Author(s):  
Esmaeel Tahanian ◽  
Hamidreza Hasani

In this paper, very compact (12mm?17mm) and simple UWB antenna is proposed. The achieved bandwidth of the presented antenna is from 3.05 GHz to 12.5 GHz and in the most of the bandwidth, the return loss is less than -20dB. In addition to frequency characteristics, time characteristics such as group delay variations for three different antenna positions, namely, front to front, back to back and side by side using CST MW studio are simulated and discussed. To improve the group delay variations, by changing the radius of the circle on the back side of the antenna, the antenna gain in different frequencies will be tuned, therefore, the time domain characteristics of the proposed antenna are greatly improved.


2020 ◽  
Vol 14 (2) ◽  
pp. 104-110
Author(s):  
Mustafa Berkan Bicer

In this study, a coplanar waveguide-fed compact microstrip antenna design for applications operating at higher 5G bands was proposed. The antenna with the compact size of 8 x 12.2 mm2 on FR4 substrate, having the dielectric constant of 4.3 and the height of 1.55 mm, was considered. The dimensions of the radiating patch and ground plane were optimized with the use of artificial cooperative search (ACS) algorithm to provide the desired return loss performance of the designed antenna. The performance analysis was done by using full-wave electromagnetic package programs based on the method of moment (MoM) and the finite integration technique (FIT). The 10 dB bandwidth for return loss results obtained with the use of the computation methods show that the proposed antenna performs well for 5G applications operating in the 24.25 – 27.50 GHz, 26.50 – 29.50 GHz, 27.50 – 28.35 GHz and 37 – 40 GHz frequency bands.


2018 ◽  
Vol 7 (4.44) ◽  
pp. 55
Author(s):  
Erfan Rohadi ◽  
Mochammad Firdaus Ali ◽  
Indrazno Siradjuddin ◽  
Awan Setiawan ◽  
Amalia Amalia ◽  
...  

The unbalanced fed ultra low profile inverted L antenna on a rectangular conducting plane is proposed and analyzed numerically and experimentally.  By adjusting the length and height of inverted L antenna, the feed point position, and the size of conducting plane, the return loss bandwidth and the directivity can be controlled. The return loss bandwidth of 2.57 % and the directivity of 4.34 dBi are obtained, when the size of conducting plane is 0.245  (: wavelength) by 0.49 , and the antenna height is /30.  The input impedance of the proposed antenna is compared with those of the conventional base-fed inverted L antenna and the base fed inverted F antenna.  Although the directivity of base-fed inverted L antenna is almost same as that of proposed antenna, its input resistance becomes very low.  In the base fed inverted F antenna, the return loss larger than 10 dB is not satisfied in the case of the antenna height less than 0.05 .  


2014 ◽  
Vol 11 (2) ◽  
pp. 89
Author(s):  
R. Wali ◽  
S. Ghnimi ◽  
A.G. Hand ◽  
T. Razban

A new compact microstrip slot antenna with Y-shaped coupling aperture is proposed. This antenna is based on a rectangular form with a microstrip fed line for excitation, and consists of slots on the edge of the radiation patch to provide dual-band operation. The design and simulation of the antenna were performed using CST Microwave Studio simulator. A prototype of the proposed antenna has been constructed and tested. In order to validate the return loss of the prototype antenna, the experimental results are presented. The results show two available bands with –10 dB band S at 2.7 GHz and band C at 5 GHz. Also, good radiation performance and antenna gain over the two frequency ranges have been obtained. Computation results confirm the experimental findings. 


Author(s):  
INDRA SURJATI ◽  
SYAH ALAM ◽  
YULI KURNIA NINGSIH

ABSTRAKPenelitian ini mengusulkan desain dan prototipe antena mikrostrip log periodik yang dikembangkan dengan metode parasitik air gap (celah udara) untuk aplikasi TV digital pada rentang frekuensi 478-694 MHz. Penggunaan elemen parasitik dengan celah udara bertujuan untuk meningkatkan nilai gain pada antena. Dari hasil pengukuran diperoleh nilai return loss sebesar -20.27 dB dan VSWR sebesar 1.31 pada frekuensi kerja 600 MHz. Bandwidth yang dihasilkan dari antena yang telah dipabrikasi adalah 273 MHz dengan rentang frekuensi kerja 461 MHz – 734 MHz. Gain yang dihasilkan dari antena mikrostrip log periodik dengan elemen parasitik adalah 16.67 dB pada frekuensi kerja 600 MHz atau meningkat 40.02 % dibandingkan dengan log periodik konvensional yang telah didesain sebelumnya. Dari keseluruhan hasil yang diperoleh maka dapat disimpulkan bahwa antena yang diusulkan dapat digunanakan sebagai antena penerima untuk aplikasi TV Digital di Indonesia.Kata kunci: antena, mikrostrip, log periodik, parasitik, celah udara ABSTRACTThis study proposes the design and prototype of log periodic microstrip antenna which was developed using the parasitic air gap for digital TV applications with a frequency range of 478-694 MHz. The use of parasitic elements with air gap aims to increase the gain of the antenna. From the measurement results, proposed antenna obtained return loss of -20.27 dB and VSWR of 1.31 at the working frequency of 600 MHz. The bandwidth produced from proposed antenna is 273 MHz with a working frequency range of 461 MHz - 734 MHz. The gain generated from log periodic microstrip antenna with parasitic element is 16.67 dB at the working frequency of 600 MHz or increased 40.02 % compared with conventional log periodic that have been designed before. From the overall results obtained, it can be concluded that the proposed antenna can be used as receiver antenna for Digital TV applications in Indonesia.Keywords: antenna, microstrip, log periodic, parasitic, air gap


2019 ◽  
Vol 2 (1) ◽  
pp. 1-7
Author(s):  
Raka Kurnia ◽  
Efri Sandi ◽  
Wisnu Djatmiko

Abstrak. Penelitian ini bertujuan untuk mengurangi efek mutual coupling dari antena array dengan tiga elemen. Peneliti menggunakan tambahan struktur MEBG dengan sampel frekuensi S-band 3 GHz. Penelitian dilakukan di Laboraturium Telekomunikasi Fakultas Teknik Universitas Negeri Jakarta pada bulan September 2017 – September 2018. Pengujian terhadap antena mikrostrip dengan tambahan struktur MEBG dilakukan dalam dua tahap, yaitu saat simulasi dan setelah fabrikasi. Terdapat dua antena pada setiap tahapannya yaitu array tanpa penambahan MEBG dan antena array dengan MEBG. Kedua antena dibandingkan sebagai usaha untuk mengukur efektifitas antena. Simulasi menggunakan bantuan software CST Microwave Studio Suite 2014 &2016 dan antena yang telah difabrikasi diukur dengan bantuan Network Analyzer merk Anritsu S223E. Penambahan struktur MEBG ini berhasil mengurangi nilai mutual coupling sebesar 0,51 dB, dan juga mempengaruhi efek mutual coupling yang berimbas pada naiknya impedansi input sebesar 1,09 Ω. Selain itu dengan struktur MEBG dapat menaikan performansi antena diantaranya berhasil menurunkan nilai return loss, dan membuat antena semakin matching.


Sign in / Sign up

Export Citation Format

Share Document