scholarly journals Successive Optimization of a Homogeneous Immunoassay for Antibody Detection in Viral Infections

Author(s):  
Lina S. Franco ◽  
Vladimiro Mujica ◽  
Joseph N. Blattman ◽  
Antonio A. García

Although there are extensive literature reports on the use of gold nanoparticle (AuNP) based homogeneous assays for detection of biomolecules, very few experimental description and procedures involving their preparation are described. In this study, AuNPs conjugated to Bovine Serum Albumin or Envelope protein from Dengue II were developed as a homogeneous immunoassay for antibody detection. We report here optimization of key parameters to prepare an immunoassay like conjugation protein concentration, centrifugation time, electrolyte addition and assay temperature.  We determined that saturating protein concentrations improved AuNPs surface coverage and uniformity of the assay and addition of sodium chloride improved sensitivity of the antibody detection method and assay stability.  Furthermore, we showed that dynamic light scattering can be used to monitor changes in gold nanoparticles in the preparation and detection steps. Additionally, numerical simulations of the plasmonic optical response of AuNPs were carried out to scan for size-dependent response of the AuNPs. The AuNPs homogeneous immunoassay developed was further used in the detection of antibodies in vitro to detect Dengue virus infection.

Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 883
Author(s):  
Mebeaselassie Andargie ◽  
Maria Vinas ◽  
Anna Rathgeb ◽  
Evelyn Möller ◽  
Petr Karlovsky

Major lignans of sesame sesamin and sesamolin are benzodioxol--substituted furofurans. Sesamol, sesaminol, its epimers, and episesamin are transformation products found in processed products. Synthetic routes to all lignans are known but only sesamol is synthesized industrially. Biosynthesis of furofuran lignans begins with the dimerization of coniferyl alcohol, followed by the formation of dioxoles, oxidation, and glycosylation. Most genes of the lignan pathway in sesame have been identified but the inheritance of lignan content is poorly understood. Health-promoting properties make lignans attractive components of functional food. Lignans enhance the efficiency of insecticides and possess antifeedant activity, but their biological function in plants remains hypothetical. In this work, extensive literature including historical texts is reviewed, controversial issues are critically examined, and errors perpetuated in literature are corrected. The following aspects are covered: chemical properties and transformations of lignans; analysis, purification, and total synthesis; occurrence in Seseamum indicum and related plants; biosynthesis and genetics; biological activities; health-promoting properties; and biological functions. Finally, the improvement of lignan content in sesame seeds by breeding and biotechnology and the potential of hairy roots for manufacturing lignans in vitro are outlined.


Author(s):  
Bogna Grygiel-Górniak

AbstractThe majority of the medical fraternity is continuously involved in finding new therapeutic schemes, including antimalarial medications (AMDs), which can be useful in combating the 2019-nCoV: coronavirus disease (COVID-19). For many decades, AMDs have been widely used in the treatment of malaria and various other anti-inflammatory diseases, particularly to treat autoimmune disorders of the connective tissue. The review comprises in vitro and in vivo studies, original studies, clinical trials, and consensus reports for the analysis, which were available in medical databases (e.g., PubMed). This manuscript summarizes the current knowledge about chloroquine (CQ)/hydroxychloroquine (HCQ) and shows the difference between their use, activity, recommendation, doses, and adverse effects on two groups of patients: those with rheumatic and viral diseases (including COVID-19). In the case of connective tissue disorders, AMDs are prescribed for a prolonged duration in small doses, and their effect is observed after few weeks, whereas in the case of viral infections, they are prescribed in larger doses for a short duration to achieve a quick saturation effect. In rheumatic diseases, AMDs are well tolerated, and their side effects are rare. However, in some viral diseases, the effect of AMDs is questionable or not so noticeable as suggested during the initial prognosis. They are mainly used as an additive therapy to antiviral drugs, but recent studies have shown that AMDs can diminish the efficacy of some antiviral drugs and may cause respiratory, kidney, liver, and cardiac complications.


2021 ◽  
Vol 9 (6) ◽  
pp. 1177
Author(s):  
Abdulaziz Alhazmi ◽  
Magloire Pandoua Nekoua ◽  
Hélène Michaux ◽  
Famara Sane ◽  
Aymen Halouani ◽  
...  

The thymus gland is a primary lymphoid organ for T-cell development. Various viral infections can result in disturbance of thymic functions. Medullary thymic epithelial cells (mTECs) are important for the negative selection of self-reactive T-cells to ensure central tolerance. Insulin-like growth factor 2 (IGF2) is the dominant self-peptide of the insulin family expressed in mTECs and plays a crucial role in the intra-thymic programing of central tolerance to insulin-secreting islet β-cells. Coxsackievirus B4 (CVB4) can infect and persist in the thymus of humans and mice, thus hampering the T-cell maturation and differentiation process. The modulation of IGF2 expression and protein synthesis during a CVB4 infection has been observed in vitro and in vivo in mouse models. The effect of CVB4 infections on human and mouse fetal thymus has been studied in vitro. Moreover, following the inoculation of CVB4 in pregnant mice, the thymic function in the fetus and offspring was disturbed. A defect in the intra-thymic expression of self-peptides by mTECs may be triggered by CVB4. The effects of viral infections, especially CVB4 infection, on thymic cells and functions and their possible role in the pathogenesis of type 1 diabetes (T1D) are presented.


2021 ◽  
Vol 570 ◽  
pp. 21-25
Author(s):  
Mami Oba ◽  
Wen Rongduo ◽  
Akatsuki Saito ◽  
Tamaki Okabayashi ◽  
Tomoko Yokota ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (45) ◽  
pp. 39469-39479 ◽  
Author(s):  
R. Pazik ◽  
A. Zięcina ◽  
B. Poźniak ◽  
M. Malecka ◽  
L. Marciniak ◽  
...  

Blue emitting, up-converting NP's of SrTiO3:Tm3+/Yb3+ synthesized using the citric route are biocompatible towards J774.E whereas the cytotoxic effect to U2OS cells is not particle size dependent but most probably is related to Sr2+ ion release.


2016 ◽  
Vol 27 (22) ◽  
pp. 3616-3626 ◽  
Author(s):  
Tanumoy Saha ◽  
Isabel Rathmann ◽  
Abhiyan Viplav ◽  
Sadhana Panzade ◽  
Isabell Begemann ◽  
...  

Filopodia are dynamic, actin-rich structures that transiently form on a variety of cell types. To understand the underlying control mechanisms requires precise monitoring of localization and concentration of individual regulatory and structural proteins as filopodia elongate and subsequently retract. Although several methods exist that analyze changes in filopodial shape, a software solution to reliably correlate growth dynamics with spatially resolved protein concentration along the filopodium independent of bending, lateral shift, or tilting is missing. Here we introduce a novel approach based on the convex-hull algorithm for parallel analysis of growth dynamics and relative spatiotemporal protein concentration along flexible filopodial protrusions. Detailed in silico tests using various geometries confirm that our technique accurately tracks growth dynamics and relative protein concentration along the filopodial length for a broad range of signal distributions. To validate our technique in living cells, we measure filopodial dynamics and quantify spatiotemporal localization of filopodia-associated proteins during the filopodial extension–retraction cycle in a variety of cell types in vitro and in vivo. Together these results show that the technique is suitable for simultaneous analysis of growth dynamics and spatiotemporal protein enrichment along filopodia. To allow readily application by other laboratories, we share source code and instructions for software handling.


Development ◽  
1981 ◽  
Vol 62 (1) ◽  
pp. 325-338
Author(s):  
Elizabeth J. Thornber ◽  
Marilyn B. Renfree ◽  
Gregory I. Wallace

The in vitro uptake and incorporation of [3H]ui idine by blastocysts of the tammar wallaby showed a 16- and 30-fold increase from day 0 to day 10 after removal of pouch young, respectively. Two of the six non-expanded blastocysts recovered on day 5 showed a tenfold increase in incorporation. During the first ten days after removal of pouch young the diameter of the blastocyst increased threefold. Endometrial exudate from gravid uteri had a higher protein concentration than exudate from nongravid uteri (39·5 ± 0·9 and 32·0 ± 2·0 mg/ml (mean ± s.e.m.), respectively). Endometrial exudates from uteri where the blastocyst was actively growing were found to contain six uterine-specific proteins. These were separated by gradient polyacrylamide gel electrophoresis. Two of the proteins were pre-albumins and the others were larger molecules (M.W. 153000–670000). Two proteins were only present at particular stages of pregnancy: the other four were present at all stages from diapause to birth, in exudate from gravid and nongravid uteri. The specific binding of progesterone and androstenedione to proteins in endometrial exudates or uterine flushings from pregnant wallabies was less than one per cent of the value obtained from day-5 pregnant rabbits. The ability of mouse blastocysts to take up and incorporate [3H]uridine into acidinsoluble material increased threefold in the presence of day-10 endometrial exudates from wallabies. However, this was less than ten percent of the values obtained in the presence of bovine serum albumin. The concentration of calcium in endometrial exudates increased from 23·6 to 45·2 μg/ml during pregnancy; in endometrium it remained at 88·7 μg/g (wet weight) throughout pregnancy, and in plasma it was 53·3 μg/ml. The concentration of zinc in endometrial exudates was 4·5 μg/ml; in endometrium it decreased from 21·8 to 13·3 μg/g (wet weight) during pregnancy and in plasma it was 0·6 μg/ml.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Rakesh K. Kumar ◽  
Jessica S. Siegle ◽  
Gerard E. Kaiko ◽  
Cristan Herbert ◽  
Joerg E. Mattes ◽  
...  

The pathogenesis of allergic asthma in childhood remains poorly understood. Environmental factors which appear to contribute to allergic sensitisation, with development of a Th2-biased immunological response in genetically predisposed individuals, include wheezing lower respiratory viral infections in early life and exposure to airborne environmental pollutants. These may activate pattern recognition receptors and/or cause oxidant injury to airway epithelial cells (AECs). In turn, this may promote Th2 polarisation via a “final common pathway” involving interaction between AEC, dendritic cells, and CD4+ T lymphocytes. Potentially important cytokines produced by AEC include thymic stromal lymphopoietin and interleukin-25. Their role is supported by in vitro studies using human AEC, as well as by experiments in animal models. To date, however, few investigations have employed models of the induction phase of childhood asthma. Further research may help to identify interventions that could reduce the risk of allergic asthma.


Sign in / Sign up

Export Citation Format

Share Document