scholarly journals Automated analysis of filopodial length and spatially resolved protein concentration via adaptive shape tracking

2016 ◽  
Vol 27 (22) ◽  
pp. 3616-3626 ◽  
Author(s):  
Tanumoy Saha ◽  
Isabel Rathmann ◽  
Abhiyan Viplav ◽  
Sadhana Panzade ◽  
Isabell Begemann ◽  
...  

Filopodia are dynamic, actin-rich structures that transiently form on a variety of cell types. To understand the underlying control mechanisms requires precise monitoring of localization and concentration of individual regulatory and structural proteins as filopodia elongate and subsequently retract. Although several methods exist that analyze changes in filopodial shape, a software solution to reliably correlate growth dynamics with spatially resolved protein concentration along the filopodium independent of bending, lateral shift, or tilting is missing. Here we introduce a novel approach based on the convex-hull algorithm for parallel analysis of growth dynamics and relative spatiotemporal protein concentration along flexible filopodial protrusions. Detailed in silico tests using various geometries confirm that our technique accurately tracks growth dynamics and relative protein concentration along the filopodial length for a broad range of signal distributions. To validate our technique in living cells, we measure filopodial dynamics and quantify spatiotemporal localization of filopodia-associated proteins during the filopodial extension–retraction cycle in a variety of cell types in vitro and in vivo. Together these results show that the technique is suitable for simultaneous analysis of growth dynamics and spatiotemporal protein enrichment along filopodia. To allow readily application by other laboratories, we share source code and instructions for software handling.

1995 ◽  
Vol 74 (6) ◽  
pp. 2604-2613 ◽  
Author(s):  
G. E. Spencer ◽  
N. I. Syed ◽  
K. Lukowiak ◽  
W. Winlow

1. In the present study we tested the ability of the general anesthetic, halothane, to affect synaptic transmission at in vivo and in vitro reconstructed peptidergic synapses between identified neurons of Lymnaea stagnalis. 2. An identified respiratory interneuron, visceral dorsal 4 (VD4), innervates a number of postsynaptic cells in the central ring ganglia of Lymnaea. Because VD4 has previously been shown to exhibit immunoreactivity for FMRFamide-related peptides, it was hypothesized that these peptides may be utilized by VD4 during synaptic transmission. In the intact, isolated CNS of Lymnaea, we have identified novel connections between VD4 and the pedal A (PeA) cells. We demonstrate that VD4 makes inhibitory connections with the PeA neurons, in particular PeA4, and that these synaptic responses are mimicked by exogenous application of FMRFamide. 3. The synaptic transmission between VD4 and the PeA cells in an intact, isolated CNS preparation was completely blocked in 2%, but not 1% halothanc. Interestingly, the postsynaptic responses (PeA) to exogenous FMRFamide were maintained in the presence of both 1 and 2% halothane. 4. To determine the specificity of the observed responses and to determine the precise synaptic site of anesthetic action, we reconstructed the VD4/PeA synapses in vitro. After isolation from their respective ganglia, both cell types extended processes and established neuritic contact. We demonstrated that not only did the presynaptic neuron reestablish the appropriate inhibitory synapses with the PeA neurons, but that the PeA cells also maintained their responsiveness to exogenous FMRFamide. 5. Superfusion of the in vitro synaptically connected VD4 and PeA cells with 2% halothane completely abolished the synaptic transmission between these cells. However, even higher concentrations of 4% halothane failed to block the responsiveness of the PeA neurons to exogenous FMRFamide. Moreover, both 1 and 2% halothane enhanced the duration of the postsynaptic response to exogenously applied FMRFamide. These data suggest that the halothane-induced depression of synaptic transmission most likely occurred at the presynaptic level. 6. This study provides the first direct evidence that peptidergic transmission in the nervous system may also be susceptible to the actions of general anesthetics. In addition, we utilized a novel approach of in vitro reconstructed synapses for studying the effects of general anesthetics on monosynaptic transmission in the absence of other synaptic influences.


Cancers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1492 ◽  
Author(s):  
Valeria Rolih ◽  
Jerri Caldeira ◽  
Elisabetta Bolli ◽  
Ahmad Salameh ◽  
Laura Conti ◽  
...  

Metastatic breast cancer (MBC) is the leading cause of cancer death in women due to recurrence and resistance to conventional therapies. Thus, MBC represents an important unmet clinical need for new treatments. In this paper we generated a virus-like particle (VLP)-based vaccine (AX09) to inhibit de novo metastasis formation and ultimately prolong the survival of patients with MBC. To this aim, we engineered the bacteriophage MS2 VLP to display an extracellular loop of xCT, a promising therapeutic target involved in tumor progression and metastasis formation. Elevated levels of this protein are observed in a high percentage of invasive mammary ductal tumors including triple negative breast cancer (TNBC) and correlate with poor overall survival. Moreover, xCT expression is restricted to only a few normal cell types. Here, we tested AX09 in several MBC mouse models and showed that it was well-tolerated and elicited a strong antibody response against xCT. This antibody-based response resulted in the inhibition of xCT’s function in vitro and reduced metastasis formation in vivo. Thus, AX09 represents a promising novel approach for MBC, and it is currently advancing to clinical development.


1984 ◽  
Vol 99 (2) ◽  
pp. 425-434 ◽  
Author(s):  
T Scherson ◽  
T E Kreis ◽  
J Schlessinger ◽  
U Z Littauer ◽  
G G Borisy ◽  
...  

Microtubule-associated proteins (MAPs) from calf brain were fluorescently labeled with 6-iodoacetamido fluorescein (I-AF). The modified MAPs (especially enriched for MAP2) were fully active in promoting tubulin polymerization in vitro and readily associated with cytoplasmic filaments when microinjected into living cultured cells. Double-labeling experiments indicated that the microinjected AF-MAPs were incorporated predominantly, if not exclusively, into cytoplasmic microtubules in untreated cells or paracrystals induced within vinblastine-treated cells. Similar results were obtained with different cell types (neuronal, epithelial, and fibroblastic) of diverse origin (man, mouse, chicken, and rat kangaroo). Mobility measurements of the microinjected AF-MAPs using the method of fluorescence-photobleaching recovery (FPR) revealed two populations of AF-MAPs with distinct dynamic properties: One fraction represents the soluble pool of MAPs and is mobile with a diffusion coefficient of D = 3 X 10(-9) cm2/s. The other fraction of MAPs is associated with the microtubules and is essentially immobile on the time scale of FPR experiments. However, it showed slow fluorescence recovery with an apparent half time of approximately 5 min. The slow recovery of fluorescence on defined photobleached microtubules occurred most probably by the incorporation of AF-MAPs from the soluble cytoplasmic pool into the bleached area. The bleached spot on defined microtubules remained essentially immobile during the slow recovery phase. These results suggest that MAPs can associate in vivo with microtubules of diverse cell types and that treadmilling of MAP2-containing microtubules in vivo, if it exists, is slower than 4 micron/h.


Author(s):  
D.J.P. Ferguson ◽  
A.R. Berendt ◽  
J. Tansey ◽  
K. Marsh ◽  
C.I. Newbold

In human malaria, the most serious clinical manifestation is cerebral malaria (CM) due to infection with Plasmodium falciparum. The pathology of CM is thought to relate to the fact that red blood cells containing mature forms of the parasite (PRBC) cytoadhere or sequester to post capillary venules of various tissues including the brain. This in vivo phenomenon has been studied in vitro by examining the cytoadherence of PRBCs to various cell types and purified proteins. To date, three Ijiost receptor molecules have been identified; CD36, ICAM-1 and thrombospondin. The specific changes in the PRBC membrane which mediate cytoadherence are less well understood, but they include the sub-membranous deposition of electron-dense material resulting in surface deformations called knobs. Knobs were thought to be essential for cytoadherence, lput recent work has shown that certain knob-negative (K-) lines can cytoadhere. In the present study, we have used electron microscopy to re-examine the interactions between K+ PRBCs and both C32 amelanotic melanoma cells and human umbilical vein endothelial cells (HUVEC).We confirm previous data demonstrating that C32 cells possess numerous microvilli which adhere to the PRBC, mainly via the knobs (Fig. 1). In contrast, the HUVEC were relatively smooth and the PRBCs appeared partially flattened onto the cell surface (Fig. 2). Furthermore, many of the PRBCs exhibited an invagination of the limiting membrane in the attachment zone, often containing a cytoplasmic process from the endothelial cell (Fig. 2).


2018 ◽  
Vol 18 (4) ◽  
pp. 246-255 ◽  
Author(s):  
Lara Termini ◽  
Enrique Boccardo

In vitro culture of primary or established cell lines is one of the leading techniques in many areas of basic biological research. The use of pure or highly enriched cultures of specific cell types obtained from different tissues and genetics backgrounds has greatly contributed to our current understanding of normal and pathological cellular processes. Cells in culture are easily propagated generating an almost endless source of material for experimentation. Besides, they can be manipulated to achieve gene silencing, gene overexpression and genome editing turning possible the dissection of specific gene functions and signaling pathways. However, monolayer and suspension cultures of cells do not reproduce the cell type diversity, cell-cell contacts, cell-matrix interactions and differentiation pathways typical of the three-dimensional environment of tissues and organs from where they were originated. Therefore, different experimental animal models have been developed and applied to address these and other complex issues in vivo. However, these systems are costly and time consuming. Most importantly the use of animals in scientific research poses moral and ethical concerns facing a steadily increasing opposition from different sectors of the society. Therefore, there is an urgent need for the development of alternative in vitro experimental models that accurately reproduce the events observed in vivo to reduce the use of animals. Organotypic cultures combine the flexibility of traditional culture systems with the possibility of culturing different cell types in a 3D environment that reproduces both the structure and the physiology of the parental organ. Here we present a summarized description of the use of epithelial organotypic for the study of skin physiology, human papillomavirus biology and associated tumorigenesis.


2006 ◽  
Vol 172 (7) ◽  
pp. 1009-1022 ◽  
Author(s):  
Jawdat Al-Bassam ◽  
Mark van Breugel ◽  
Stephen C. Harrison ◽  
Anthony Hyman

Stu2p from budding yeast belongs to the conserved Dis1/XMAP215 family of microtubule-associated proteins (MAPs). The common feature of proteins in this family is the presence of HEAT repeat–containing TOG domains near the NH2 terminus. We have investigated the functions of the two TOG domains of Stu2p in vivo and in vitro. Our data suggest that Stu2p regulates microtubule dynamics through two separate activities. First, Stu2p binds to a single free tubulin heterodimer through its first TOG domain. A large conformational transition in homodimeric Stu2p from an open structure to a closed one accompanies the capture of a single free tubulin heterodimer. Second, Stu2p has the capacity to associate directly with microtubule ends, at least in part, through its second TOG domain. These two properties lead to the stabilization of microtubules in vivo, perhaps by the loading of tubulin dimers at microtubule ends. We suggest that this mechanism of microtubule regulation is a conserved feature of the Dis1/XMAP215 family of MAPs.


2021 ◽  
Vol 22 (4) ◽  
pp. 1514 ◽  
Author(s):  
Akihiro Yachie

Since Yachie et al. reported the first description of human heme oxygenase (HO)-1 deficiency more than 20 years ago, few additional human cases have been reported in the literature. A detailed analysis of the first human case of HO-1 deficiency revealed that HO-1 is involved in the protection of multiple tissues and organs from oxidative stress and excessive inflammatory reactions, through the release of multiple molecules with anti-oxidative stress and anti-inflammatory functions. HO-1 production is induced in vivo within selected cell types, including renal tubular epithelium, hepatic Kupffer cells, vascular endothelium, and monocytes/macrophages, suggesting that HO-1 plays critical roles in these cells. In vivo and in vitro studies have indicated that impaired HO-1 production results in progressive monocyte dysfunction, unregulated macrophage activation and endothelial cell dysfunction, leading to catastrophic systemic inflammatory response syndrome. Data from reported human cases of HO-1 deficiency and numerous studies using animal models suggest that HO-1 plays critical roles in various clinical settings involving excessive oxidative stress and inflammation. In this regard, therapy to induce HO-1 production by pharmacological intervention represents a promising novel strategy to control inflammatory diseases.


Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 630
Author(s):  
Huili Lyu ◽  
Cody M. Elkins ◽  
Jessica L. Pierce ◽  
C. Henrique Serezani ◽  
Daniel S. Perrien

Excess inflammation and canonical BMP receptor (BMPR) signaling are coinciding hallmarks of the early stages of injury-induced endochondral heterotopic ossification (EHO), especially in the rare genetic disease fibrodysplasia ossificans progressiva (FOP). Multiple inflammatory signaling pathways can synergistically enhance BMP-induced Smad1/5/8 activity in multiple cell types, suggesting the importance of pathway crosstalk in EHO and FOP. Toll-like receptors (TLRs) and IL-1 receptors mediate many of the earliest injury-induced inflammatory signals largely via MyD88-dependent pathways. Thus, the hypothesis that MyD88-dependent signaling is required for EHO was tested in vitro and in vivo using global or Pdgfrα-conditional deletion of MyD88 in FOP mice. As expected, IL-1β or LPS synergistically increased Activin A (ActA)-induced phosphorylation of Smad 1/5 in fibroadipoprogenitors (FAPs) expressing Alk2R206H. However, conditional deletion of MyD88 in Pdgfrα-positive cells of FOP mice did not significantly alter the amount of muscle injury-induced EHO. Even more surprisingly, injury-induced EHO was not significantly affected by global deletion of MyD88. These studies demonstrate that MyD88-dependent signaling is dispensable for injury-induced EHO in FOP mice.


2021 ◽  
Vol 22 (8) ◽  
pp. 3995
Author(s):  
Cheong-Yong Yun ◽  
Nahyun Choi ◽  
Jae Un Lee ◽  
Eun Jung Lee ◽  
Ji Young Kim ◽  
...  

Nuclear factor erythroid 2-related factor 2 (Nrf2), which is linked to autophagy regulation and melanogenesis regulation, is activated by marliolide. In this study, we investigated the effect of a marliolide derivative on melanosome degradation through the autophagy pathway. The effect of the marliolide derivative on melanosome degradation was investigated in α-melanocyte stimulating hormone (α-MSH)-treated melanocytes, melanosome-incorporated keratinocyte, and ultraviolet (UV)B-exposed HRM-2 mice (melanin-possessing hairless mice). The marliolide derivative, 5-methyl-3-tetradecylidene-dihydro-furan-2-one (DMF02), decreased melanin pigmentation by melanosome degradation in α-MSH-treated melanocytes and melanosome-incorporated keratinocytes, evidenced by premelanosome protein (PMEL) expression, but did not affect melanogenesis-associated proteins. The UVB-induced hyperpigmentation in HRM-2 mice was also reduced by a topical application of DMF02. DMF02 activated Nrf2 and induced autophagy in vivo, evidenced by decreased PMEL in microtubule-associated proteins 1A/1B light chain 3B (LC3)-II-expressed areas. DMF02 also induced melanosome degradation via autophagy in vitro, and DMF02-induced melanosome degradation was recovered by chloroquine (CQ), which is a lysosomal inhibitor. In addition, Nrf2 silencing by siRNA attenuated the DMF02-induced melanosome degradation via the suppression of p62. DMF02 induced melanosome degradation in melanocytes and keratinocytes by regulating autophagy via Nrf2-p62 activation. Therefore, Nrf2 activator could be a promising therapeutic agent for reducing hyperpigmentation.


Sign in / Sign up

Export Citation Format

Share Document