scholarly journals Natto extract, a Japanese fermented soybean food, directly inhibits viral infections including SARS-CoV-2 in vitro

2021 ◽  
Vol 570 ◽  
pp. 21-25
Author(s):  
Mami Oba ◽  
Wen Rongduo ◽  
Akatsuki Saito ◽  
Tamaki Okabayashi ◽  
Tomoko Yokota ◽  
...  
2008 ◽  
Vol 107 (4) ◽  
pp. 1421-1428 ◽  
Author(s):  
Dong Wang ◽  
Li-jun Wang ◽  
Feng-xue Zhu ◽  
Ji-ye Zhu ◽  
Xiao Dong Chen ◽  
...  

Author(s):  
Bogna Grygiel-Górniak

AbstractThe majority of the medical fraternity is continuously involved in finding new therapeutic schemes, including antimalarial medications (AMDs), which can be useful in combating the 2019-nCoV: coronavirus disease (COVID-19). For many decades, AMDs have been widely used in the treatment of malaria and various other anti-inflammatory diseases, particularly to treat autoimmune disorders of the connective tissue. The review comprises in vitro and in vivo studies, original studies, clinical trials, and consensus reports for the analysis, which were available in medical databases (e.g., PubMed). This manuscript summarizes the current knowledge about chloroquine (CQ)/hydroxychloroquine (HCQ) and shows the difference between their use, activity, recommendation, doses, and adverse effects on two groups of patients: those with rheumatic and viral diseases (including COVID-19). In the case of connective tissue disorders, AMDs are prescribed for a prolonged duration in small doses, and their effect is observed after few weeks, whereas in the case of viral infections, they are prescribed in larger doses for a short duration to achieve a quick saturation effect. In rheumatic diseases, AMDs are well tolerated, and their side effects are rare. However, in some viral diseases, the effect of AMDs is questionable or not so noticeable as suggested during the initial prognosis. They are mainly used as an additive therapy to antiviral drugs, but recent studies have shown that AMDs can diminish the efficacy of some antiviral drugs and may cause respiratory, kidney, liver, and cardiac complications.


2021 ◽  
Vol 9 (6) ◽  
pp. 1177
Author(s):  
Abdulaziz Alhazmi ◽  
Magloire Pandoua Nekoua ◽  
Hélène Michaux ◽  
Famara Sane ◽  
Aymen Halouani ◽  
...  

The thymus gland is a primary lymphoid organ for T-cell development. Various viral infections can result in disturbance of thymic functions. Medullary thymic epithelial cells (mTECs) are important for the negative selection of self-reactive T-cells to ensure central tolerance. Insulin-like growth factor 2 (IGF2) is the dominant self-peptide of the insulin family expressed in mTECs and plays a crucial role in the intra-thymic programing of central tolerance to insulin-secreting islet β-cells. Coxsackievirus B4 (CVB4) can infect and persist in the thymus of humans and mice, thus hampering the T-cell maturation and differentiation process. The modulation of IGF2 expression and protein synthesis during a CVB4 infection has been observed in vitro and in vivo in mouse models. The effect of CVB4 infections on human and mouse fetal thymus has been studied in vitro. Moreover, following the inoculation of CVB4 in pregnant mice, the thymic function in the fetus and offspring was disturbed. A defect in the intra-thymic expression of self-peptides by mTECs may be triggered by CVB4. The effects of viral infections, especially CVB4 infection, on thymic cells and functions and their possible role in the pathogenesis of type 1 diabetes (T1D) are presented.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Rakesh K. Kumar ◽  
Jessica S. Siegle ◽  
Gerard E. Kaiko ◽  
Cristan Herbert ◽  
Joerg E. Mattes ◽  
...  

The pathogenesis of allergic asthma in childhood remains poorly understood. Environmental factors which appear to contribute to allergic sensitisation, with development of a Th2-biased immunological response in genetically predisposed individuals, include wheezing lower respiratory viral infections in early life and exposure to airborne environmental pollutants. These may activate pattern recognition receptors and/or cause oxidant injury to airway epithelial cells (AECs). In turn, this may promote Th2 polarisation via a “final common pathway” involving interaction between AEC, dendritic cells, and CD4+ T lymphocytes. Potentially important cytokines produced by AEC include thymic stromal lymphopoietin and interleukin-25. Their role is supported by in vitro studies using human AEC, as well as by experiments in animal models. To date, however, few investigations have employed models of the induction phase of childhood asthma. Further research may help to identify interventions that could reduce the risk of allergic asthma.


2001 ◽  
Vol 75 (6) ◽  
pp. 2803-2809 ◽  
Author(s):  
Andreas F. Kolb ◽  
Lecia Pewe ◽  
John Webster ◽  
Stanley Perlman ◽  
C. Bruce A. Whitelaw ◽  
...  

ABSTRACT Neutralizing antibodies represent a major host defense mechanism against viral infections. In mammals, passive immunity is provided by neutralizing antibodies passed to the offspring via the placenta or the milk as immunoglobulin G and secreted immunoglobulin A. With the long-term goal of producing virus-resistant livestock, we have generated mice carrying transgenes that encode the light and heavy chains of an antibody that is able to neutralize the neurotropic JHM strain of murine hepatitis virus (MHV-JHM). MHV-JHM causes acute encephalitis and acute and chronic demyelination in susceptible strains of mice and rats. Transgene expression was targeted to the lactating mammary gland by using the ovine β-lactoglobulin promoter. Milk from these transgenic mice contained up to 0.7 mg of recombinant antibody/ml. In vitro analysis of milk derived from different transgenic lines revealed a linear correlation between antibody expression and virus-neutralizing activity, indicating that the recombinant antibody is the major determinant of MHV-JHM neutralization in murine milk. Offspring of transgenic and control mice were challenged with a lethal dose of MHV-JHM. Litters suckling nontransgenic dams succumbed to fatal encephalitis, whereas litters suckling transgenic dams were fully protected against challenge, irrespective of whether they were transgenic. This demonstrates that a single neutralizing antibody expressed in the milk of transgenic mice is sufficient to completely protect suckling offspring against MHV-JHM-induced encephalitis.


LWT ◽  
1996 ◽  
Vol 29 (8) ◽  
pp. 751-755 ◽  
Author(s):  
T. Yokota ◽  
T. Hattori ◽  
H. Ohishi ◽  
K. Hasegawa ◽  
K. Watanabe

2002 ◽  
Vol 8 (3) ◽  
pp. 237-242 ◽  
Author(s):  
J Hong ◽  
M V Tejada-Simon ◽  
V M Rivera ◽  
Y CQ Zang ◽  
J Z Zhang

Viral infections are potentially associated with the etiology and pathogenesis of multiple sclerosis (MS). It has been speculated that the treatment efficacy of interferon beta (IFN beta) in MS may relate to its anti-viral properties. The study was undertaken to evaluate the in vivo anti-viral effects of IFN beta-1a in patients with MS. Human herpesvirus-6 (HHV-6) was studied as an example for being a latent neurotropic virus. IFN beta used at concentrations of approximately 0.5 mg/ml was shown to significantly reduce in vitro HHV-6 replication in a susceptible T-cell line. Sera derived from 23 MS patients treated with IFN beta-1a were examined for serum cell-free DNA of HHV-6 as an indicator for viral replication and the reactivity of IgM antibodies to a recombinant HHV-6 virion protein containing a known immunoreactive region. The results were compared with those of control sera obtained from untreated MS (n=29) and healthy individuals (n=21). The findings indicated that IFN beta treatment significantly reduced HHV-6 replication as evident by decreased cell-free DNA in treated MS specimens. The results correlated with decreased IgM reactivity to the HHV-6 antigen in treated MS patients compared to untreated controls, suggesting reduced exposure to HHV-6. The findings were confirmed in paired sera obtained from seven MS patients before and after the treatment. The study provides new evidence indicating that IFN beta has potent in vivo anti-viral effects that may contribute to the treatment efficacy in MS.


Nutrients ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 3198 ◽  
Author(s):  
Francesco Pecora ◽  
Federica Persico ◽  
Alberto Argentiero ◽  
Cosimo Neglia ◽  
Susanna Esposito

Viral infections are a leading cause of morbidity and mortality worldwide, and the importance of public health practices including handwashing and vaccinations in reducing their spread is well established. Furthermore, it is well known that proper nutrition can help support optimal immune function, reducing the impact of infections. Several vitamins and trace elements play an important role in supporting the cells of the immune system, thus increasing the resistance to infections. Other nutrients, such as omega-3 fatty acids, help sustain optimal function of the immune system. The main aim of this manuscript is to discuss of the potential role of micronutrients supplementation in supporting immunity, particularly against respiratory virus infections. Literature analysis showed that in vitro and observational studies, and clinical trials, highlight the important role of vitamins A, C, and D, omega-3 fatty acids, and zinc in modulating the immune response. Supplementation with vitamins, omega 3 fatty acids and zinc appears to be a safe and low-cost way to support optimal function of the immune system, with the potential to reduce the risk and consequences of infection, including viral respiratory infections. Supplementation should be in addition to a healthy diet and fall within recommended upper safety limits set by scientific expert bodies. Therefore, implementing an optimal nutrition, with micronutrients and omega-3 fatty acids supplementation, might be a cost-effective, underestimated strategy to help reduce the burden of infectious diseases worldwide, including coronavirus disease 2019 (COVID-19).


Sign in / Sign up

Export Citation Format

Share Document