scholarly journals The Concept of Comprehensive Data Analysis from Ultra-Wideband Subsystem for Smart City Positioning Purposes

Author(s):  
Damian Grzechca ◽  
Krzysztof Hanzel ◽  
Krzysztof Paszek

As a part of the proposed article, the authors presented comprehensive data analysis for movement data that comes from a positioning system based on ultra-wide band (UWB) technology. For purpose of this article, a test was carried out during which the car equipped with cruise control overcame the given path at a speed from 10 km/h to 60 km/h. The obtained motion models (information about position) have been filtered through a series of filters - from fundamentals filters with a variable window (median, moving average, Savitzky-Golay filter), through more complex ones like the Wiener or Kalman filter. As a result, the authors proposed a form of data analysis and filtration depending on the speed of the moving object. In addition, the maximum accuracy that can be obtained for a given traffic model was also determined. The whole research proves that it is possible to use a system based on UWB technology in positioning objects for urban applications - smart city, in industry 4.0 applications as well as for positioning autonomous vehicles in urban applications, such as well as on highways to maintain cohesion of convoys vehicles.

Smart Cities ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 314-335
Author(s):  
Hafiz Usman Ahmed ◽  
Ying Huang ◽  
Pan Lu

The platform of a microscopic traffic simulation provides an opportunity to study the driving behavior of vehicles on a roadway system. Compared to traditional conventional cars with human drivers, the car-following behaviors of autonomous vehicles (AVs) and connected autonomous vehicles (CAVs) would be quite different and hence require additional modeling efforts. This paper presents a thorough review of the literature on the car-following models used in prevalent micro-simulation tools for vehicles with both human and robot drivers. Specifically, the car-following logics such as the Wiedemann model and adaptive cruise control technology were reviewed based on the vehicle’s dynamic behavior and driving environments. In addition, some of the more recent “AV-ready (autonomous vehicles ready) tools” in micro-simulation platforms are also discussed in this paper.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 529 ◽  
Author(s):  
Ch Ramakrishna ◽  
G A.E.Satish Kumar ◽  
P Chandra Sekhar Reddy

This paper presents a band notched WLAN self complementaryultra wide band antenna for wireless applications. The proposed antenna encounters a return loss (RL) less than -10dB for entire ultra wideband frequency range except band notched frequency. This paper proposes a hexagon shape patch, edge feeding, self complementary technique and defective ground structure. The antenna has an overall dimensionof 28.3mm × 40mm × 2mm, builton  substrate FR4 with a relative dielectric permittivity 4.4. And framework is simulated finite element method with help of high frequency structured simulator HFSSv17.2.the proposed antenna achieves a impedance bandwidth of 8.6GHz,  band rejected WLAN frequency range 5.6-6.5 GHz with  vswr is less than 2.


Author(s):  
Fengqi Zhou ◽  
Feng Qin ◽  
Zao Yi ◽  
Wei-Tang Yao ◽  
Zhimin Liu ◽  
...  

Solar energy absorption is a very important field in photonics. The successful development of an efficient, wide-band solar absorber will be an extremely powerful impetus in this field. We proposed...


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohammed Anouar Naoui ◽  
Brahim Lejdel ◽  
Mouloud Ayad ◽  
Abdelfattah Amamra ◽  
Okba kazar

PurposeThe purpose of this paper is to propose a distributed deep learning architecture for smart cities in big data systems.Design/methodology/approachWe have proposed an architectural multilayer to describe the distributed deep learning for smart cities in big data systems. The components of our system are Smart city layer, big data layer, and deep learning layer. The Smart city layer responsible for the question of Smart city components, its Internet of things, sensors and effectors, and its integration in the system, big data layer concerns data characteristics 10, and its distribution over the system. The deep learning layer is the model of our system. It is responsible for data analysis.FindingsWe apply our proposed architecture in a Smart environment and Smart energy. 10; In a Smart environment, we study the Toluene forecasting in Madrid Smart city. For Smart energy, we study wind energy foresting in Australia. Our proposed architecture can reduce the time of execution and improve the deep learning model, such as Long Term Short Memory10;.Research limitations/implicationsThis research needs the application of other deep learning models, such as convolution neuronal network and autoencoder.Practical implicationsFindings of the research will be helpful in Smart city architecture. It can provide a clear view into a Smart city, data storage, and data analysis. The 10; Toluene forecasting in a Smart environment can help the decision-maker to ensure environmental safety. The Smart energy of our proposed model can give a clear prediction of power generation.Originality/valueThe findings of this study are expected to contribute valuable information to decision-makers for a better understanding of the key to Smart city architecture. Its relation with data storage, processing, and data analysis.


2021 ◽  
Author(s):  
Debdeep Sarkar ◽  
Yahia Antar

In this paper, we develop a formalism based on either spatially or temporally integrated electromagnetic (EM) Lagrangian, which provides new insights about the near-field reactive energy around generic antennas for arbitrary spatio-temporal excitation signals. Using electric and magnetic fields calculated via FDTD technique and interpolation routines, we compute and plot the normalized values of space/time integrated EM Lagrangian around antennas. While the time-integration of EM Lagrangian sheds light onto the spatial distribution of inductive/capacitive reactive energy, time-variation of spatially integrated EM Lagrangian can help in design of ultra-wideband (UWB) MIMO antennas with low mutual coupling. The EM Lagrangian approach can assist in design of energy harvesting and wireless power transfer systems, as well as for electromagnetic interference mitigation applications.


2017 ◽  
Author(s):  
Bernabe Ortega-Tenezaca ◽  
Humbert Gonzalez-Diaz ◽  
Viviana Quevedo-Tumailli
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document