scholarly journals Grocery Delivery or Customer Pickup - Influences on Energy Consumption and CO2 Emissions in Munich

Author(s):  
Lukas Hardi ◽  
Ulrich Wagner

TThe number of supermarkets offering a grocery delivery has been increasing during the last years. Many studies deduce CO2 emission savings using this concept. Since the delivery of groceries also consumes energy and produces emissions, break-even points can be calculated, from where the delivery has environmental advantages compared to the customer pickup. In this paper, influences of differing vehicle use on break-even points for savings of energy and CO2 emissions are analyzed for the case of Haidhausen Süd, a city district of Munich in Germany. Internal combustion engine and electric vehicles are investigated to depict current as well as future trends. After an introduction to the used methodology, the potential to save energy and CO2 emissions related to the delivery of groceries in the chosen district of Munich is evaluated. Afterwards, influences on the break even points are presented and discussed. As the results show, a delivery of groceries leads to energy and carbon dioxide savings in a wide range of private vehicle use for grocery shopping trips. Nevertheless, if the complete customer vehicle fleet is electrified, the use of delivery vehicles with an internal combustion engine can cause an additional environmental impact at the current modal split for shopping trips in Germany.

2019 ◽  
Vol 11 (3) ◽  
pp. 641 ◽  
Author(s):  
Lukas Hardi ◽  
Ulrich Wagner

The number of supermarkets offering grocery delivery has increased in recent years. Many studies conclude that CO2 emission savings result from this concept. Since the delivery of groceries also consumes energy and produces emissions, break-even points can be calculated, where the delivery is environmentally beneficial compared to customer pickup. In this paper, influences of differing vehicle use on break-even points for savings of energy and CO2 emissions are analyzed for the case of Haidhausen Süd, a district in Munich, Germany. Internal combustion engine and electric vehicles are investigated to depict current as well as future trends. After an introduction to the methodology used, the potential to save energy and CO2 emissions related to the delivery of groceries in the chosen district of Munich are evaluated. Subsequently, influences on the break-even points are presented and discussed. As the results show, a delivery of groceries leads to energy and carbon dioxide savings in a wide range of private vehicle use for grocery shopping trips. Nevertheless, if the complete customer vehicle fleet is electrified, the use of delivery vehicles with an internal combustion engine could cause an additional environmental impact at the current modal split for shopping trips in Germany.


2013 ◽  
Vol 136 (6) ◽  
Author(s):  
Bernhardt Lüddecke ◽  
Dietmar Filsinger ◽  
Jan Ehrhard ◽  
Bastian Steinacher ◽  
Christian Seene ◽  
...  

Turbochargers develop away from an auxiliary component—being “off the shelve”—towards an integrated component of the internal combustion engine. Hence, increased attention is paid to the accuracy of the measured turbine and compressor maps. Especially turbine efficiency measurement under engine-relevant operating conditions (pulsed flow) is recently receiving increased attention in the respective research community. Despite various turbine map extrapolation methods, sufficient accuracy of the input test data is indispensable. Accurate experimental data are necessary to achieve high quality extrapolation results, enabling a wide range and precise prediction of turbine behavior under unsteady flow conditions, determined by intermittent operation of the internal combustion engine. The present work describes the first application of a contactless shaft torque measurement technique—based on magnetostriction—to a small automotive turbocharger. The contactless torque measuring system is presented in detail and sensor principle as well as sensor calibration are illustrated. A sensitivity study regarding sensor position influences onto sensor signal proves the robustness and very good repeatability of the system. In the second part of the paper, steady state experimental results from operation on a conventional hot gas test stand over a wide map range are presented. These results are validated against full turbine stage (adiabatic as well as diabatic) CFD results as well as against “cold” efficiency measurements, based on measured inlet and outlet temperatures. The influence and relevance of bearing friction for such measurements is underlined and the improvements on this matter—achieved by direct torque measurement—are demonstrated.


2020 ◽  
Vol 1 ◽  
pp. 1-23
Author(s):  
Dominik Bucher ◽  
Henry Martin ◽  
Jannik Hamper ◽  
Atefeh Jaleh ◽  
Henrik Becker ◽  
...  

Abstract. The adoption of electric vehicles has the potential to help decarbonizing the transport sector if they are powered by renewable energy sources. Limitations commonly associated with e-cars are their comparatively short ranges and long recharging cycles, leading to anxiety when having to travel long distances. Other factors such as temperature, destination or weekday may influence people in choosing an e-car for a certain trip. Using a unique dataset of 129 people who own both an electric vehicle (EV) as well as one powered by an internal combustion engine (ICE), we analyze tracking data over a year in order to have an empirically verified choice model. Based on a wide range of predictors, this model tells us for an individual journey if the person would rather choose the EV or the ICE car. Our findings show that there are only weak relations between the predictor and target variables, indicating that for many people the switch to an e-car would not affect their lifestyle and the related range anxiety diminishes when actually owning an electric vehicle. In addition, we find that choice behavior does not generalize well over different users.


2016 ◽  
Vol 1 (2) ◽  
pp. 51-53 ◽  
Author(s):  
Иншаков ◽  
Aleksandr Inshakov ◽  
Байков ◽  
Dmitriy Baykov ◽  
Десяев ◽  
...  

The purpose of research is to improve the quality of production and repair internal low-power mobile farm combustion engines. To achieve this goal it was suggested to carry out running and testing the engines of small tools and equipment in specialized economical braking stands. The design of such stand, consisting of internal combustion engine, connected crank shaft with asynchronous electric machine with wound rotor, connected to the three-phase network, and matrix converter frequency included in the three-phase electrical network and consisting of nine bidirectional transistor switches, which receive signals space-vector control with automatic control system connected with the test equipment on the basis of a personal computer on which the signals from the sensors mounted on the internal combustion engine is also coming. This stand design for running and testing of internal combustion engines of mobile low power farm machinery is technically easy to manufacture and cost-effective to use. In addition, the design feature of the proposed technical solution is characterized by high energy efficiency and reliability, small dimensions and weight parameters, and wide range of speed control asynchronous machine with wound rotor.


2019 ◽  
Vol 11 (9) ◽  
pp. 2690 ◽  
Author(s):  
Ryuji Kawamoto ◽  
Hideo Mochizuki ◽  
Yoshihisa Moriguchi ◽  
Takahiro Nakano ◽  
Masayuki Motohashi ◽  
...  

In order to reduce vehicle emitted greenhouse gases (GHGs) on a global scale, the scope of consideration should be expanded to include the manufacturing, fuel extraction, refinement, power generation, and end-of-life phases of a vehicle, in addition to the actual operational phase. In this paper, the CO2 emissions of conventional gasoline and diesel internal combustion engine vehicles (ICV) were compared with mainstream alternative powertrain technologies, namely battery electric vehicles (BEV), using life-cycle assessment (LCA). In most of the current studies, CO2 emissions were calculated assuming that the region where the vehicles were used, the lifetime driving distance in that region and the CO2 emission from the battery production were fixed. However, in this paper, the life cycle CO2 emissions in each region were calculated taking into consideration the vehicle’s lifetime driving distance in each region and the deviations in CO2 emissions for battery production. For this paper, the US, European Union (EU), Japan, China, and Australia were selected as the reference regions for vehicle operation. The calculated results showed that CO2 emission from the assembly of BEV was larger than that of ICV due to the added CO2 emissions from battery production. However, in regions where renewable energy sources and low CO2 emitting forms of electric power generation are widely used, as vehicle lifetime driving distance increase, the total operating CO2 emissions of BEV become less than that of ICV. But for BEV, the CO2 emissions for replacing the battery with a new one should be added when the lifetime driving distance is over 160,000 km. Moreover, it was shown that the life cycle CO2 emission of ICV was apt to be smaller than that of BEV when the CO2 emissions for battery production were very large.


Today, stands for running in and testing internal combustion engines are actively used both at car service enterprises and in the educational process of specialized specialties of educational institutions. The article analyzes the stand KI-1363-V, installed on the basis of the department of technical service and repair of machines of the Federal State Budgetary Educational Institution of Higher Education of the Perm State Technical University, proposed and implemented measures for its modernization. In addition, a review of analogues on the market was carried out, as a result of which it was established that the purchase of a ready-made complex for testing internal combustion engines is economically unjustified. In the course of the work, a hardware and software complex (HSC) was developed and implemented, which allows automating the processes of taking performance characteristics from the engine under test and reducing the measurement error in order to increase the efficiency of using the test bench. In addition, the article describes the work carried out on the modernization of the test engine, implemented an engine management system with distributed fuel injection and electronic control. The electronic control unit for the engine and the stand and the specialized software "APK of the KI-1363-V stand" have been developed, which, in conjunction with the EFI Analytics TunerStudio software product, allows to implement a wide range of research and laboratory work related to tuning and characterizing the tested internal combustion engine... Keywords internal combustion engine, ICE test bench, ICE load characteristic, engine performance indicators


Author(s):  
Mauro Francesco Sgroi

The concern related to global warming is generating a legislative pressure on reducing CO2 emissions that is forcing automotive industry to find alternative and more efficient solutions to internal combustion engines. In Europe, the current regulation for passenger vehicles limits the CO2 emissions calculated as fleet average to 130 g/km and fix a target value of 95 g/km to be achieved by 2021. Car manufacturers will have to pay heavy penalties for each registered vehicle exceeding the CO2 limits (€95 per exceeding gram by 2019). Concurrently, the regulations on toxic emissions (CO, NOx, unburned hydrocarbons, particulate matter) is also becoming more and more stringent and requires complex and costly abatement systems to respect the strict limitations imposed on NOx and particulate matter emissions. On the other hand, zero emission electric vehicles, based on batteries, are still not mature enough for a replacement of the internal combustion engine in extra-urban applications, since they are not able to guarantee the driving range required by customers. Hydrogen fuelled vehicles, could meet the same performance of conventional cars, but the cost of materials used in the fuel cell stack is preventing the penetration into the market. Therefore, even though characterized by low energy efficiency, the internal combustion engine will remain, in the short-medium term, the reference technology for the transport industry but the environmental regulations will impose its hybridization with electric systems. Hybrid architectures allow circulating in electric mode in urban areas, limiting the local pollution, and increase the efficiency of the car through energy recovery during breaking phases. An energetic analysis of conventional internal combustion engine reveals that about 70% percent of the chemical energy stored in the fuel is converted in to mechanical energy for traction: the remaining part is dissipated as heat in the exhaust gases (30%) and in the cooling circuit (40%). So a great amount of thermal energy (tens of kW) is available on a car and its effective recovery can dramatically increase the efficiency of the system. Hybrid systems facilitate this task, since the produced electric energy can be stored in the battery pack. Thermoelectric generators (TEGs) offer the possibility to directly convert thermal energy into electricity with a reduced complexity and potential low cost. Even though available semiconducting junctions are characterized by low efficiency and limited operating temperatures, coupling a TEG to the internal combustion engine would allow recovering about 1 kW of electric power on a medium size car, with a reduction of CO2 emissions of about 10 g/km.


1963 ◽  
Vol 85 (3) ◽  
pp. 177-179
Author(s):  
Cyrus Kano

Bending fatigue strength data from many tests on internal combustion engine crankshafts are analyzed. This analysis results in the development of simply related strength and geometrical parameters which summarize and unify the results. The data presented are for crankshafts of one material type but in a wide range of sizes and shapes.


Author(s):  
Jerald A. Caton

The second law of thermodynamics provides the mechanism for assessing the quality of energy. The non-conserved property used for this assessment is called exergy, availability or available energy. For the internal combustion engine, the exergy of the fuel is distributed among work, heat transfer, exhaust, and is destroyed by several processes. The major destruction of exergy for the internal combustion engine is during the combustion process. This paper documents this destruction for a wide range of engine operating parameters, design parameters, and fuels. A 5.7 liter, spark ignition, automotive engine was selected for this study. Operating parameters that were examined included equivalence ratio, speed, load and spark timing. Design parameters that were examined included compression ratio, expansion ratio and the use of turbocharging. Combustion parameters and oxidizer were examined as well. The fuels examined included isooctane (base), methane, propane, hexane, methanol, ethanol, hydrogen and carbon monoxide. For the part load base case (1400 rpm and a bmep of 325 kPa) using isooctane, the destruction of exergy was 21% of the fuel exergy. For many of the engine operating and design parameters, this destruction was relatively constant (between about 20 and 23%). The parameters that resulted in the greatest change of the exergy destruction were (1) exhaust gas recirculation, and (2) inlet oxygen concentration. In general, the amount of the destruction of exergy during the combustion processes was associated with the level of the combustion temperatures.


Sign in / Sign up

Export Citation Format

Share Document