scholarly journals A Meso-Scale Approach to Estimating Vertical Mixing Induced by Wind–Waves

Author(s):  
Vladislav Polnikov

The aim of work is to derive an explicit expression for a function of vertical mixing induced by wind-waves. To this end, in the Navier-Stokes equations, a current is decomposed into four constituents: the mean flow, the wave-orbital motion, the wave-induced turbulent and the background turbulent currents. This decomposition allows separating the wave-induced Reynolds stress, Rw, from the background one, Rb. To make a statistical closure for Rw, the Prandtl approach for the background turbulent fluctuations is used that results in an implicit expression for the wave-induced vertical mixing function, Bv. Expression for Bv is specified based on the author’s results for the eddy viscosity found earlier in the frame of the three-layer concept for a wavy air–sea interface, used for modelling wind-drift currents [1]. Finally, the explicit parameterization for Bv(a, u*, z) is found as a linear function in both the wave amplitude at depth z, a(z), and the friction velocity in the air, u*. The linear dependence of function Bv(a) on the wave amplitude provides the enhanced vertical mixing induced by wind–waves in comparison with function Bv(a) having the cubic dependence found in [2], as far as the wind-wave amplitude a(z) decays exponentially with depth.

2017 ◽  
Vol 826 ◽  
pp. 396-420 ◽  
Author(s):  
M. Bouyges ◽  
F. Chedevergne ◽  
G. Casalis ◽  
J. Majdalani

This work introduces a similarity solution to the problem of a viscous, incompressible and rotational fluid in a right-cylindrical chamber with uniformly porous walls and a non-circular cross-section. The attendant idealization may be used to model the non-reactive internal flow field of a solid rocket motor with a star-shaped grain configuration. By mapping the radial domain to a circular pipe flow, the Navier–Stokes equations are converted to a fourth-order differential equation that is reminiscent of Berman’s classic expression. Then assuming a small radial deviation from a fixed chamber radius, asymptotic expansions of the three-component velocity and pressure fields are systematically pursued to the second order in the radial deviation amplitude. This enables us to derive a set of ordinary differential relations that can be readily solved for the mean flow variables. In the process of characterizing the ensuing flow motion, the axial, radial and tangential velocities are compared and shown to agree favourably with the simulation results of a finite-volume Navier–Stokes solver at different cross-flow Reynolds numbers, deviation amplitudes and circular wavenumbers.


Author(s):  
Djordje Romanic ◽  
Horia Hangan

Analytical and semi-empirical models are inexpensive to run and can complement experimental and numerical simulations for risk analysis-related applications. Some models are developed by employing simplifying assumptions in the Navier-Stokes equations and searching for exact, but many times inviscid solutions occasionally complemented by boundary layer equations to take surface effects into account. Other use simple superposition of generic, canonical flows for which the individual solutions are known. These solutions are then ensembled together by empirical or semi-empirical fitting procedures. Few models address turbulent or fluctuating flow fields, and all models have a series of constants that are fitted against experiments or numerical simulations. This chapter presents the main models used to provide primarily mean flow solutions for tornadoes and downbursts. The models are organized based on the adopted solution techniques, with an emphasis on their assumptions and validity.


2017 ◽  
Vol 12 (1) ◽  
pp. 43-49
Author(s):  
Egor Palkin ◽  
Rustam Mullyadzhanov

Flows between two closely spaced bounding surfaces are frequently appear in engineering applications and natural flows. In current paper the flow over a cylinder in a narrow rectangular duct was investigated by numerical computations of Navier-Stokes equations using Large eddy simulations (LES) at ReD = 3 750 based on cylinder diameter and the bulk velocity at inflow boundary. The influence of the bounding walls was demonstrated by comparing mean flow streamlines with the flow over an infinite cylinder at close Reynolds numbers. A comparison between the time-averaged velocity field in front and past the cylinder with experimental from the literature data showed good agreement although the characteristic horseshoe vortex structures are highly sensitive to Reynolds number and turbulence level at inflow boundary. Most energetic modes in recirculating region were revealed by spectral analysis. These low-frequency modulations were characterized by the pair of dominating vortices which are expected to have high influence on the heat transfer in near wake of the cylinder.


2014 ◽  
Vol 136 (6) ◽  
Author(s):  
B. A. Younis ◽  
A. Abrishamchi

The paper reports on the prediction of the turbulent flow field around a three-dimensional, surface mounted, square-sectioned cylinder at Reynolds numbers in the range 104–105. The effects of turbulence are accounted for in two different ways: by performing large-eddy simulations (LES) with a Smagorinsky model for the subgrid-scale motions and by solving the unsteady form of the Reynolds-averaged Navier–Stokes equations (URANS) together with a turbulence model to determine the resulting Reynolds stresses. The turbulence model used is a two-equation, eddy-viscosity closure that incorporates a term designed to account for the interactions between the organized mean-flow periodicity and the random turbulent motions. Comparisons with experimental data show that the two approaches yield results that are generally comparable and in good accord with the experimental data. The main conclusion of this work is that the URANS approach, which is considerably less demanding in terms of computer resources than LES, can reliably be used for the prediction of unsteady separated flows provided that the effects of organized mean-flow unsteadiness on the turbulence are properly accounted for in the turbulence model.


Author(s):  
S M Fraser ◽  
Y Zhang

Three-dimensional turbulent flow through the impeller passage of a model mixed-flow pump has been simulated by solving the Navier-Stokes equations with an improved κ-ɛ model. The standard κ-ɛ model was found to be unsatisfactory for solving the off-design impeller flow and a converged solution could not be obtained at 49 per cent design flowrate. After careful analysis, it was decided to modify the standard κ-ɛ model by including the extra rates of strain due to the acceleration of impeller rotation and geometrical curvature and removing the mathematical ill-posedness between the mean flow turbulence modelling and the logarithmic wall function.


1995 ◽  
Vol 303 ◽  
pp. 215-232 ◽  
Author(s):  
H. M. Badr ◽  
S. C. R. Dennis ◽  
S. Kocabiyik ◽  
P. Nguyen

The transient flow field caused by an infinitely long circular cylinder placed in an unbounded viscous fluid oscillating in a direction normal to the cylinder axis, which is at rest, is considered. The flow is assumed to be started suddenly from rest and to remain symmetrical about the direction of motion. The method of solution is based on an accurate procedure for integrating the unsteady Navier–Stokes equations numerically. The numerical method has been carried out for large values of time for both moderate and high Reynolds numbers. The effects of the Reynolds number and of the Strouhal number on the laminar symmetric wake evolution are studied and compared with previous numerical and experimental results. The time variation of the drag coefficients is also presented and compared with an inviscid flow solution for the same problem. The comparison between viscous and inviscid flow results shows a better agreement for higher values of Reynolds and a Strouhal numbers. The mean flow for large times is calculated and is found to be in good agreement with previous predictions based on boundary-layer theory.


2002 ◽  
Vol 465 ◽  
pp. 213-235 ◽  
Author(s):  
D. R. GRAHAM ◽  
J. J. L. HIGDON

Oscillatory forcing of a porous medium may have a dramatic effect on the mean flow rate produced by a steady applied pressure gradient. The oscillatory forcing may excite nonlinear inertial effects leading to either enhancement or retardation of the mean flow. Here, in Part 1, we consider the effects of non-zero inertial forces on steady flows in porous media, and investigate the changes in the flow character arising from changes in both the strength of the inertial terms and the geometry of the medium. The steady-state Navier–Stokes equations are solved via a Galerkin finite element method to determine the velocity fields for simple two-dimensional models of porous media. Two geometric models are considered based on constricted channels and periodic arrays of circular cylinders. For both geometries, we observe solution multiplicity yielding both symmetric and asymmetric flow patterns. For the cylinder arrays, we demonstrate that inertial effects lead to anisotropy in the effective permeability, with the direction of minimum resistance dependent on the solid volume fraction. We identify nonlinear flow phenomena which might be exploited by oscillatory forcing to yield a net increase in the mean flow rate. In Part 2, we take up the subject of unsteady flows governed by the full time-dependent Navier–Stokes equations.


2012 ◽  
Vol 1 (33) ◽  
pp. 64
Author(s):  
Maria João Teles ◽  
António Pires-Silva ◽  
Michel Benoit

An advanced CFD solver based on the RANS (Reynolds Averaged Navier-Stokes) equations is used to evaluate wave-current interactions through numerical simulations of combined wave-current free surface turbulent flows. The repercussions of various schemes for modeling turbulence effects is addressed with a special attention to the exchanges and fluxes of momentum and energy between the mean flow components and the wave (oscillatory) component. Numerical simulations are compared with experimental data from Klopman (1994).


1999 ◽  
Vol 122 (1) ◽  
pp. 179-183 ◽  
Author(s):  
Robert E. Spall ◽  
Blake M. Ashby

Solutions to the incompressible Reynolds-averaged Navier–Stokes equations have been obtained for turbulent vortex breakdown within a slightly diverging tube. Inlet boundary conditions were derived from available experimental data for the mean flow and turbulence kinetic energy. The performance of both two-equation and full differential Reynolds stress models was evaluated. Axisymmetric results revealed that the initiation of vortex breakdown was reasonably well predicted by the differential Reynolds stress model. However, the standard K-ε model failed to predict the occurrence of breakdown. The differential Reynolds stress model also predicted satisfactorily the mean azimuthal and axial velocity profiles downstream of the breakdown, whereas results using the K-ε model were unsatisfactory. [S0098-2202(00)01601-1]


Author(s):  
Imran Akhtar ◽  
Jeff Borggaard ◽  
John A. Burns ◽  
Lizette Zietsman

Functional gains are integral kernels of the standard feedback operator and are useful in control of partial differential equations (PDEs). These functional gains provide physical insight into how the control mechanism is operating. In some cases, these functional gains can provide information about the optimal placement of actuators and sensors. The study is motivated by fluid flow control and focuses on the computation of these functions. However, for practical purposes, one must be able to compute these functions for a wide variety of PDEs. For higher dimensional systems, computing these gains is at least as challenging as the original simulation problem. To reduce the complexity of the governing equations, reduced-order models are often developed by reducing the PDEs to ordinary-differential equations (ODEs). In this study, we use proper orthogonal decomposition (POD)-Galerkin based approach and develop a reduced-order model of a bluff body wake. We solve the incompressible Navier-Stokes equations, simulate the flow past a circular cylinder, and record the snapshots of the flow field. We compute the POD eigenfunctions and project the Navier-Stokes equations onto these few of these eigenfunctions to develop a reduced-order model. Later, we modify the model by introducing a control function simulating suction actuation on the cylinder surface. We linearize the model about the mean flow and apply feedback control to suppress vortex shedding. We then compute the functional gains for the applied control. We identify these gains at various stations in the wake region and suggest optimum locations for the sensors.


Sign in / Sign up

Export Citation Format

Share Document