scholarly journals Characteristics of Arsenic Leached from Sediments: Agricultural Implications of Abandoned Mines

Author(s):  
Soonho Hwang ◽  
Yonggu Her ◽  
Sang Min Jun ◽  
Jung-Hun Song ◽  
Goontaek Lee ◽  
...  

Heavy metals, including arsenic from abandoned mines, are easily transported with sediment and deposited in water bodies such as reservoirs and lakes, creating critical water quality issues when they are released. Understanding the leaching of heavy metals is necessary for developing efficient water quality improvement plans. This study investigated how arsenic leaches from different soil types and responds to hydrologic conditions to identify areas susceptible to arsenic contamination. In this study, batch- and column-leaching tests and sequential extraction procedures were used to examine arsenic leaching processes in detail. The results showed that most arsenic-loaded sediments accumulated in the vicinity of a reservoir inlet, and arsenic in reservoir beds have a higher leaching potential than those from agricultural land and river beds. Arsenic deposited at the bottom of reservoirs had higher mobility than that in the other soils, and arsenic leaching was closely associated with the acidity of water. In addition, arsenic leaching was found to be responsive to seasons (wet or dry) as its mobilization is controlled by organic compounds that vary over time. The results suggested that temporal variations in the hydrochemical composition of reservoir water should be considered when defining a management plan for reservoir water quality.

2019 ◽  
Vol 9 (21) ◽  
pp. 4628 ◽  
Author(s):  
Soonho Hwang ◽  
Younggu Her ◽  
Sang Min Jun ◽  
Jung-Hun Song ◽  
Goontaek Lee ◽  
...  

Heavy metals, including arsenic from abandoned mines, are easily transported with sediment and deposited in waterbodies such as reservoirs and lakes, creating critical water quality issues when they are released. Understanding the leaching of heavy metals is necessary for developing efficient water quality improvement plans. This study investigated how arsenic leaches from different soil and sediment types and responds to hydrologic conditions to identify areas susceptible to arsenic contamination. In this study, batch- and column-leaching tests and sequential extraction procedures were used to examine arsenic leaching processes in detail. The results showed that most arsenic-loaded sediments accumulated in the vicinity of a reservoir inlet, and arsenic in reservoir beds have a higher leaching potential than those from agricultural land and stream beds. Arsenic deposited at the bottom of reservoirs had higher mobility than that in the other soils and sediments, and arsenic leaching was closely associated with the acidity of water. In addition, arsenic leaching was found to be responsive to seasons (wet or dry) as its mobilization is controlled by organic compounds that vary over time. The results suggested that temporal variations in the hydrochemical composition of reservoir water should be considered when defining a management plan for reservoir water quality.


Author(s):  
I. Sh. Normatov ◽  
V.V. Goncharuk ◽  
N.A. Amirgaliev ◽  
A.S. Madibekov ◽  
A.I. Normatov

The water quality of the transboundary Pyanj River in the formation zone and along the riverbed before merging with another tributary of the transboundary Amu Darya River-the Vakhsh River was studied. The water quality on the upstream river corresponds to the very soft class (> 1.5 mmol/dm3) and in the middle and the downstream to the soft class (1.5-3.0 mmol/dm3). At the upper, middle and lower reaches of the Pyanj river the concentration of alkaline earth exceeds alkali metals (Ca2+ + Mg2+> Na+ + K+) at HCO3- > SO42- + Cl- and according to the Handa classification they are characterized by temporary rigidity. To assess the criterion of applicability of the Pyanj river water for irrigation the coefficient of sodium adsorption (SAC) was calculated for water samples from the upstream (Khorog), middle (Darvaz) and the downstream (Lower Pyanj) of the Pyanj river that were equal to 0.88; 1.07; 1.71, respectively. The SAC values for all water samples (from the upper, middle and lower reaches) of the Pyanj river indicate their good qualities for irrigation of agricultural land. The concentration of heavy metals in the Pyanj river is significantly lower than the maximum permissible concentration (MPC).


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 581 ◽  
Author(s):  
Simone Toller ◽  
Beatrice M. S. Giambastiani ◽  
Nicolas Greggio ◽  
Marco Antonellini ◽  
Ivo Vasumini ◽  
...  

The Ridracoli artificial basin is the main water reservoir of the Emilia-Romagna region (Northeast Italy). The reservoir was made by construction of a dam on the Bidente River in 1982. It is used as the main drinking water supply of the region and for hydropower production. The physical and chemical parameterseters (temperature, pH, electrical conductivity, and dissolved oxygen) of shallow water are continuously monitored whereas vertical depth profiles of water chemical data (major anions and cations, as well as heavy metals) are available on a bimonthly base. The dataset used in this research is related to the years 2015 and 2016. Data show that the reservoir is affected by an alternation of water stratification and mixing processes due to seasonal change in water temperature, density, and the reservoir water level. In late summer and winter months, the water column is stratified with anoxic conditions at the bottom. During the spring, on the other hand, when storage is at its maximum, water recirculation and mixing occur. The reservoir is characterized by a dynamic system in which precipitation, dissolution, and adsorption processes at the bottom affect water quality along the reservoir depth column. The temperature stratification and anoxic conditions at the reservoir bottom influence the concentration and mobility of some heavy metals (i.e., Fe and Mn) and, consequently, the quality of water that reaches the treatment and purification plant. This study is relevant for water resource management of the reservoir. Assessing the seasonal changes in water quality along the reservoir water column depth is fundamental to plan water treatment operations and optimize their costs. The reservoir assessment allows one to identify countermeasures to avoid or overcome the high concentrations of heavy metals and the stratification problem (i.e., artificial mixing of the water column, new water intakes at different depths operating at different times of the year, blowers, etc.).


2018 ◽  
Vol 25 (4) ◽  
pp. 569-580
Author(s):  
Wael S. El-Tohamy ◽  
Samar N. ABDEL-Baki ◽  
Nagwa E. Abdel-Aziz ◽  
Abdel-Aziz A. Khidr

Abstract The objective of this study is to reveal the spatial and temporal variations of surface water quality in this part of the River Nile with respect to heavy metals pioneerution. Seventeen parameters in total were monitored at seven sites on a monthly basis from October 2013 to September 2014. The dataset was treated using the tools of univariate and multivariate statistical analyses. Cluster analysis showed three different groups of similarity between the sampling sites reflecting the variability in physicochemical characteristics and pollution levels of the study area. Six PCs factors were identified as responsible for the data structure explaining 91 % of the total variance. These were eutrophication factor (23.2 %), physicochemical factor (20.6 %), nutrients (16.3 %) and three additional factors, affected by alkalinity and heavy metals, recorded variance less than 15 % each. Also, the heavy metals pollution index (HPI) revealed that most of the calculated values were below the critical index limit of 100. However, two higher values (124.89 and 133.11) were calculated at sites V and VI during summer due to the temperature and increased run-off in the river system.


2016 ◽  
Vol 29 (1) ◽  
pp. 31-39 ◽  
Author(s):  
Esrat Jahan ◽  
Ashrafun Nessa ◽  
Md Faruque Hossain ◽  
Zakia Parveen

An investigation was carried out to assess the characteristics of leachate and its impact on surrounding agricultural land of the Matuail landfill site, Dhaka, Bangladesh. Leachate samples were collected from active dumping areas; soil and plant samples from three different sites of surrounding agricultural areas. Water quality parameters like pH, DO, BOD, COD, TDS were measured for leachate samples and heavy metals like Cu, Zn, Pb, Cd, Ni were analyzed for leachate, soil and plant samples. The results showed that untreated leachate concentrations of DO, BOD, COD and TDS were 1.34, 96, 1343 and 7120 mg/l, respectively that exceeded inland surface water standard but the concentrations of DO (7.49 mg/l), BOD (10 mg/l) and TDS (790/l) in the treated leachate pond were found within the permissible limits. The leachate samples are not contaminated with heavy metals as these are present below the toxic limits. The heavy metal concentrations in agricultural soils are below the permissible limits except Pb; but in plants the concentrations of Cu, Zn and Pb exceeded the critical limits.Bangladesh J. Sci. Res. 29(1): 31-39, June-2016


2018 ◽  
Vol 34 ◽  
pp. 02015
Author(s):  
Syarifah Intan Najla Syed Hashim ◽  
Siti Hidayah Abu Talib ◽  
Muhammad Salleh Abustan

A study of spatial and temporal variations on water quality and trophic status was conducted to determine the temporal (average reading by month) and spatial variations of water quality in Sembrong reservoir and to evaluate the trophic status of the reservoir. Water samples were collected once a month from November 2016 to June 2017 in seventeen (17) sampling stations at Sembrong Reservoir. Results obtained on the concentration of dissolved oxygen (DO), water temperature, pH and secchi depth had no significant differences compared to Total Phosphorus (TP) and chlorophyll-a. The water level has significantly decreased the value of the water temperature, pH and TP. The water quality of Sembrong reservoir is classified in Class II which is suitable for recreational uses and required conventional treatment while TSI indicates that sembrong reservoir was in lower boundary of classical eutrophic (TSI > 50).


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 508
Author(s):  
Young-Jun Jo ◽  
Jung-Hun Song ◽  
Younggu Her ◽  
Giorgio Provolo ◽  
Jina Beom ◽  
...  

Excessive nutrient loadings from drainage areas and resulting water quality degradation in rivers are the major environmental issues around the world. The water quality further deteriorates for the large seasonal variation of precipitation and water flow. Environmental decision makers have been exploring affordable and effective ways of securing environmental flow (EF) to improve the water quality, especially in dry seasons, and agricultural reservoirs have attracted the attention of policymakers as an alternative source of EF. This study proposed an analysis framework for assessing the EF supply potential of agricultural reservoirs as alternative sources of EF. A reservoir water balance model was prepared to mathematically represent the reservoir water balance and quantify temporal variations of the amount of water available for the EF supply. The simulation model was designed to explicitly consider inflow from the upstream drainage areas, irrigation water requirement, and hydrological processes happening in the reservoirs. The proposed framework was applied to four agricultural reservoirs located in South Korea to evaluate its efficiency. Results showed that the additional storage capacity added by the dam reinforcement enabled the study reservoirs to satisfy both needs, EF and irrigation water supply. The surplus capacity turned out to be enough to satisfy various EF supply scenarios at the annual time scale. However, the current operation plans do not consider the seasonal variations of reservoir hydrology and thus cannot supply EF without violating the original operational goal, irrigation water, especially in dry months. The results demonstrate that it is necessary to consider the temporal variations of EF when developing reservoir operation rules and plans to secure EF. This study also highlights the unconventional roles of agricultural reservoirs as resources for improved environmental quality. The methods presented in this study are expected to be a useful tool for the assessment of agricultural reservoirs’ EF supply potential.


2013 ◽  
Vol 7 (3) ◽  
pp. 386-394

The Plastiras dam was constructed in the late 1950s mainly for electric power production, but it has also partially covered irrigation needs and water supply of the plain of Thessaly. Later, the site has been designated as an environment conservation zone because of ecological and landscape values, while tourist activities have been developed around the reservoir. Irrigation of agricultural land, hydroelectric production, drinking water supply, tourism, ecosystem water quality and scenery conservation have evidently been conflicting targets for many years. Good management would require a multi-criteria decision making. Historical data show that the irregular water release has resulted in a great annual fluctuation of the reservoir water level. This situation could be improved by a rational management of abstractions. Apparently, higher release leads simultaneously to more power production and to irrigation of a larger agricultural land. Moreover, demands for electricity and for irrigation are partially competing to each other, due to different optimal time schedules of releases. On the other hand, higher water release leads to lower water level in the reservoir and, therefore, it decreases the beauty of the scenery and deteriorates the trophic state of the lake. Such degradation affects the tourist potential as well as the quality of drinking water supplied by the reservoir. A multi-criteria approach uses different scenarios for the minimum permissible water level of the reservoir, if a constant annual release is applied. The minimum level concept is a simple and functional tool, because it is understood by people, easily certified and incorporated into regulations. The quantity of water that would be yearly available is a function of the minimum level allowed. The water quality depends upon the trophic state of the lake, mainly the concentration of chlorophyll-a, which determines the state of eutrophication and is estimated by water quality simulation models, taking into account pollutant loads such as nitrogen and phosphorus. The value of the landscape is much depending on the water level of the lake, because for lower levels a dead-zone appears between the surface of the water and the surrounding vegetation. When this dead zone is large, it seems lifeless and the lake appears partially empty. Quantification of this visual effect is not easy, but it is possible to establish a correspondence between the aesthetic assessment of the scenery and the minimum allowed reservoir level. Using results from hydrological analysis, water quality models and landscape evaluation, it seems possible to construct a multi-criteria table with different criteria described against alternatives and with a plot of three relative indices against the minimum level allowed. However, decision making has to take into account the fact that comparison or merging of indices corresponding to different criteria analysis encompasses a degree of arbitrariness. More objective decisions would be possible if different benefits and costs were measured in a common unit. Moreover, management will be sensitive to different social pressures.


Sign in / Sign up

Export Citation Format

Share Document