scholarly journals Debris Flow Generation Based on Critical Discharge: A Case Study of Xiongmao Catchment, Southwestern China

Author(s):  
Lingfeng Gong ◽  
Chuan Tang ◽  
Jiang Xiong ◽  
Ning Li

A debris flows generation related to a poorly sorted mixture of soil, catchment topography and rainfall characteristic. Runoff of some depth on valley resulting from intensive rainfall can incur the sediments movement of beds or adjacent banks. The fluid flow in channel affected by rainfall parameters combinations, such as duration, intensity, cumulative rainfall, etc., is the key factor for debris movement. In this paper, the rainfall characteristics and occurrence conditions of debris flow in Xiongmao gully on July, 26th, 2016, have been explored, combined with field survey and indoor simulation experiment on the collected critical discharge parameters of debris movement. Further, debris distribution and the critical discharge characteristics have been analysed, by means of investigation on the catchment topography and occurrence cause of the debris flow, analysis of the critical discharge parameters on which the channel debris began to move, and K value clustering analysis method to characterize the rainfall pattern of the studied area, the discharge calculation of debris flow occurring in different rainfall patterns. The results have shown that, for the debris flow occurrence in Xiongmao gully, the debris initiation on the middle reaches of the gully provide the majority of solid particles for the disaster on July, 26th, 2016, and the upstream confluent provided catchment. Based on the relationship obtained from laboratory test, in which the calculated critical discharge was 43.8m3/s, less than the peak discharge (Qc =66.7m3/s), calculated by morphological method. In addition, it has been indicated that the dominated rainfall patterns of the studied area are first-quartile and second-quartile, that is, the rainfall is primarily at earlier or middle to preliminary stage of this time rainfall event. The critical discharge for the occurrence of debris flow on July, 26th was achieved 20a rainfall frequency, the larger runoff volume generated on shorten heavily rainfall. Based on individuality characteristics, such as distributed hydrological analysis, critical discharge and rainfall pattern of debris flow, the forewarning could be more efficient.

Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 552 ◽  
Author(s):  
Lingfeng Gong ◽  
Chuan Tang ◽  
Jiang Xiong ◽  
Ning Li

Generation of debris flows is related to poorly sorted mixtures of soil, catchment topography, and rainfall characteristics. Runoff in a valley resulting from intensive rainfall can induce sediment movement within stream beds or along adjacent banks. The water flow in channels is affected by rainfall parameters such as duration, intensity, cumulative rainfall, etc., and is the key factor in debris movement. In this paper, the rainfall characteristics and occurrence conditions of debris flow in Xiongmao Gully on 26 July 2016 were explored. Using data from field surveys and indoor simulation experiments, evaluations of critical discharge parameters for debris movement were performed. Furthermore, debris distribution and the critical discharge characteristics were analyzed via investigation of the catchment topography and cause of the debris flow, and analysis was made of the critical discharge parameters initiating channel debris movement. A K-value clustering analysis method was applied to characterize the rainfall pattern of the study area and its effects on calculation of debris flow. The results showed that for the debris flow in Xiongmao Gully, the debris initiation in the middle reaches of the gully provided the majority of solid particles for the disaster on 26 July 2016, and the upstream confluent provided catchment. Based on the relationship determined by laboratory tests, the calculated critical discharge was 43.8 m3/s, less than the peak discharge (Qc = 66.7 m3/s) calculated by morphological method. In addition, it was indicated that the dominant rainfall patterns of the studied area were first-quartile and second-quartile, i.e., the rainfall occurred primarily at the early or middle stage of this rainfall event. The critical discharge for the debris flow on 26 July was achieved at 5% rainfall frequency, and the larger runoff volume was generated from a short heavy rainfall. According to specific catchment characteristics, such as distributed hydrological analysis, critical discharge, and rainfall pattern of debris flow, forewarning of a damaging debris flow could be made more effective.


2013 ◽  
pp. 301-307 ◽  
Author(s):  
Chiara Deangeli ◽  
Erika Paltrinieri ◽  
Davide Tiranti
Keyword(s):  

Geomorphology ◽  
2021 ◽  
Vol 375 ◽  
pp. 107529
Author(s):  
Haruka Tsunetaka ◽  
Norifumi Hotta ◽  
Fumitoshi Imaizumi ◽  
Yuichi S. Hayakawa ◽  
Takeshi Masui

Geology ◽  
2019 ◽  
Vol 47 (8) ◽  
pp. 791-794 ◽  
Author(s):  
Tjalling de Haas ◽  
Alexander L. Densmore

Abstract Estimation of the volumes of potential future debris flows is a key factor in hazard assessment and mitigation. Worldwide, however, there are few catchments for which detailed volume-frequency information is available. We (1) reconstructed volume-frequency curves for 10 debris-flow catchments in Saline Valley, California (USA), from a large number of well-preserved, unmodified surficial flow deposits, and (2) assessed the correlations between lobe-volume quantiles and a set of morphometric catchment characteristics. We found statistically significant correlations between lobe-volume quantiles, including median and maximum, and catchment relief, length (planimetric distance from the fan apex to the most distant point along the watershed boundary), perimeter, and Melton ratio (relief divided by the square root of catchment area). These findings show that it may be possible to roughly estimate debris-flow lobe-volume quantiles from basic catchment characteristics that can be obtained from globally available elevation data. This may assist in design-volume estimation for debris-flow catchments where past flow volumes are otherwise unknown.


2019 ◽  
Vol 92 ◽  
pp. 05002
Author(s):  
Carlos Besso ◽  
Tácio Mauro Pereira de Campos

Debris flow materials behave as a fluid, hence its analysis requires rheological parameters such as yield stress and viscosity. Yield stress is associated to the start and the end of the mass movement downhill in the sense that it denotes the yield transition from the creep to the flow regime, i.e., passage from solid to fluid state. This paper presents an experimental study of the yield stress of a colluvium from Rio de Janeiro, through its determination in a modified set-up of the slump test and in a rotational parallel plate rheometer. Tests were performed in five different water contents above its liquidity limit, providing a fairly good relationship between yield stress and water content. While slump test provides yield stress related to the beginning of the movement (acceleration), rheometer results are related to flow's outset and stoppage. As a result, the percentual differences between yield stresses associated with acceleration and deceleration were less than 5% in all testes, which is related to the low hysteresis effect in the flow curves obtained in the rotational rheometer. Comparing the two methodologies, it is proposed a correction from rheometer to slump test results. Results obtained are compared with data presented in other studies involving soil's yield stress, showing a good acceptance of the slump test results as a cheap alternative to rheometers.


2021 ◽  
Vol 280 ◽  
pp. 105962
Author(s):  
Yajun Li ◽  
Xingmin Meng ◽  
Peng Guo ◽  
Tom Dijkstra ◽  
Yan Zhao ◽  
...  

2021 ◽  
Author(s):  
Hanna Mariana Henorman ◽  
Duratul Ain Tholibon ◽  
Masyitah Md Nu ◽  
Hamizah Mokhtar ◽  
Jamilah Abd Rahim ◽  
...  

Abstract Assessing the effects of rainfall patterns on runoff, sediment, nutrients under variation of rainfall pattern are significant in the quantification of sediment transported by overland flow. Previous experimental and field works studied that sediment transport is influenced by hydraulic properties of flow, physical properties of soil and surface characteristics. This study aims at determining the effect of rainfall patterns on surface runoff, sediment loss and nutrient loss. Experiments were carried out using four rainfall patterns, namely Pattern A (uniform-type: 8-8-8 l/min), Pattern B (increasing-type: 7-8-9 l/min), Pattern C (increasing-decreasing-type: 7-9-8 l/min) and Pattern D (decreasing-type: 9-8-7 l/min) with the changes of intensity every 30 minutes that gives total rainfall duration of 90 minutes for each pattern. The simulation was performed in three repetitions. The average total runoff produced was 668.65, 701.40, 699.10, and 722.63 liters, for rainfall patterns A, B, C, and D, respectively. The trend of runoff generated was influenced by the rainfall patterns, Pattern D generated the highest amount of runoff meanwhile Pattern A generated the lowest. For total suspended sediment concentrations, the mean value among every three repetitions of rainfall pattern resulted as 14,518.88, 13,732.73, 8,011.71 and 19,918.50 mg/l for patterns A, B, C, and D, respectively Pattern D contributed to the highest amount of sediment accumulated whereby Pattern C generated the lowest sediment despite the trend showed a different approach than the other 3 patterns. In nutrient concentrations, the determined total losses for ammonia nitrogen were 3.986, 2.891, 3.504, and 4.601g; nitrate nitrogen were 3.934, 2.665, 4.008, and 3.259g; phosphorus were 1.346, 0.222, 0.207, and 0.679g, for patterns A, B, C, and D, respectively. In general, rainfall pattern does have a significant impact on the trend of nutrient losses, where the trend shows that higher concentrations at the start and eventually lowered through the end, but Pattern D as compared to other patterns resulted in a more severe nutrient loss. For the affected area of the soil movement process, the calculated means of the affected area are 79.60, 68.70, 72.43, and 64.97% for patterns A, B, C, and D respectively. The lowest mean of the affected area is contributed by Pattern D and the highest by Pattern A.


Landslides ◽  
2005 ◽  
Vol 2 (4) ◽  
pp. 257-265 ◽  
Author(s):  
D. F. VanDine ◽  
R. F. Rodman ◽  
P. Jordan ◽  
J. Dupas
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document