scholarly journals A Self-Tuning NPID Control Method for FOPTD Processes

Author(s):  
Hinsermu A. Garbaabaa ◽  
Million G. Geda ◽  
Minyamer G. Wase ◽  
Selvarasu Ranganathan ◽  
Gang-Gyoo Jin ◽  
...  

Owing to the time-varying characteristics and nonlinearities of industrial processes, control has higher difficulties and results in challenges for advanced technology. In this paper, a self-tuning controller that includes a nonlinear proportional-integral-derivative (NPID) control function as well as a self-tuning function is proposed for first-order plus time delay (FOPTD) process control. The NPID control function is implemented using the nonlinear PID controller whose optimum parameters are adapted by a neural network (NN). The self-tuning function is able to identify the process dynamics using a short period of process behavior and tune NPID parameters based on the identified parameters. The advantage of the proposed method is validated with a set of simulation works on three processes and the comparison results are presented.

2021 ◽  
Vol 18 (1) ◽  
pp. 172988142199399
Author(s):  
Xiaoguang Li ◽  
Bi Zhang ◽  
Daohui Zhang ◽  
Xingang Zhao ◽  
Jianda Han

Shape memory alloy (SMA) has been utilized as the material of smart actuators due to the miniaturization and lightweight. However, the nonlinearity and hysteresis of SMA material seriously affect the precise control. In this article, a novel disturbance compensation-based adaptive control scheme is developed to improve the control performance of SMA actuator system. Firstly, the nominal model is constructed based on the physical process. Next, an estimator is developed to online update not only the unmeasured system states but also the total disturbance. Then, the novel adaptive controller, which is composed of the nominal control law and the compensation control law, is designed. Finally, the proposed scheme is evaluated in the SMA experimental setup. The comparison results have demonstrated that the proposed control method can track reference trajectory accurately, reject load variations and stochastic disturbances timely, and exhibit satisfactory robust stability. The proposed control scheme is system independent and has some potential in other types of SMA-actuated systems.


2013 ◽  
Vol 738 ◽  
pp. 272-275
Author(s):  
Dun Chen Lan

In the field of mechanical automation, intelligent industrial robot technology is an important branch in the research field of robot; it is always the hot spots of the world robot research, and it being used to get the application in the industry today. Robot experiment platform of PLC and motor control technology, it based on the control method used by the robot control system improvements to make it more perfect run more precise, reasonable. In the same time, the man-machine interface state run monitoring, to ensure the normal operation of the system. Improved control method of the improvement of the work efficiency, reduce the work of the workers a duplication degree have a significant effect, and the system control at the scene, especially PLC control has excellent control function and good cost performance .


2014 ◽  
Vol 663 ◽  
pp. 336-341 ◽  
Author(s):  
Mohd Farid Muhamad Said ◽  
Zulkarnain Abdul Latiff ◽  
Aminuddin Saat ◽  
Mazlan Said ◽  
Shaiful Fadzil Zainal Abidin

In this paper, engine simulation tool is used to investigate the effect of variable intake manifold and variable valve timing technologies on the engine performance at full load engine conditions. Here, an engine model of 1.6 litre four cylinders, four stroke spark ignition (SI) engine is constructed using GT-Power software to represent the real engine conditions. This constructed model is then correlated to the experimental data to make sure the accuracy of this model. The comparison results of volumetric efficiency (VE), intake manifold air pressure (MAP), exhaust manifold back pressure (BckPress) and brake specific fuel consumption (BSFC) show very well agreement with the differences of less than 4%. Then this correlated model is used to predict the engine performance at various intake runner lengths (IRL) and various intake valve open (IVO) timings. Design of experiment and optimisation tool are applied to obtain optimum parameters. Here, several configurations of IRL and IVO timing are proposed to give several options during the engine development work. A significant improvement is found at configuration of variable IVO timing and variable IRL compared to fixed IVO timing and fixed IRL.


Fractals ◽  
2020 ◽  
Vol 28 (08) ◽  
pp. 2040008
Author(s):  
J. E. LAVÍN-DELGADO ◽  
S. CHÁVEZ-VÁZQUEZ ◽  
J. F. GÓMEZ-AGUILAR ◽  
G. DELGADO-REYES ◽  
M. A. RUÍZ-JAIMES

In this paper, a novel fractional-order control strategy for the SCARA robot is developed. The proposed control is composed of [Formula: see text] and a fractional-order passivity-based adaptive controller, based on the Caputo–Fabrizio and Atangana–Baleanu derivatives, respectively; both controls are robust to external disturbances and change in the desired trajectory and effectively enhance the performance of robot manipulator. The fractional-order dynamic model of the robot manipulator is obtained by using the Euler–Lagrange formalism, as well as the model of the induction motors which are the actuators that drive their joints. Through simulations results, the effectiveness and robustness of the proposed control strategy have been demonstrated. The performance of the fractional-order proposed control method is compared with its integer-order counterpart, composed of the PI controller and the conventional passivity-based adaptive controller, reported in the literature. The performance comparison results demonstrate the superiority and effectiveness of the fractional-order proposed control strategy for a SCARA robot manipulator.


Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3342 ◽  
Author(s):  
Wenjun Li ◽  
Chen Zhang ◽  
Wei Gao ◽  
Miaolei Zhou

Piezoelectric actuators (PEA) have been widely used in the ultra-precision manufacturing fields. However, the hysteresis nonlinearity between the input voltage and the output displacement, which possesses the properties of rate dependency and multivalued mapping, seriously impedes the positioning accuracy of the PEA. This paper investigates a control methodology without the hysteresis model for PEA actuated nanopositioning systems, in which the inherent drawback generated by the hysteresis nonlinearity aggregates the control accuracy of the PEA. To address this problem, a neural network self-tuning control approach is proposed to realize the high accuracy tracking with respect to the system uncertainties and hysteresis nonlinearity of the PEA. First, the PEA is described as a nonlinear equation with two variables, which are unknown. Then, using the capabilities of super approximation and adaptive parameter adjustment, the neural network identifiers are used to approximate the two unknown variables automatically updated without any off-line identification, respectively. To verify the validity and effectiveness of the proposed control methodology, a series of experiments is executed on a commercial PEA product. The experimental results illustrate that the established neural network self-tuning control method is efficient in damping the hysteresis nonlinearity and enhancing the trajectory tracking property.


2013 ◽  
Vol 416-417 ◽  
pp. 890-894
Author(s):  
Xiao Hui Guo

Tobacco Warehousing is chiefly applied to preserve the tobacco that is separated into leaf and stem so that the tobacco moisture is controlled at the range of technology demand.The present control method of tobacco save is that the references of every PID control link are set up and adjusted by human experience. So, the control effect varies with the individual and the output tobacco moisture can't maintain stable.The fuzzy-PID temperature system is based on CC2430 single chip. It includes the power source, the manipulative algorithm, the temperature examination , the correspondence of up PC and the output-control of the switch value and so on. Computer takes the parameter deviation and the deviation change as input, and the PID controllers parameters of ΔKp, Δki, ΔKd as output. The sub program realized the corresponding events by completing zone bit and zone bit judgment. The main program realized temperature control function by calling the wireless micro-controller sends a signal to the charged unit


2014 ◽  
Vol 6 (2) ◽  
pp. 188-193
Author(s):  
Andrius Platakis

A review of various standards, concerning distributed generation, and different Active Harmonic Compensation (AHC) or Active Power Filtering (APF) methods are presented in this paper. Short overview of each control method is given. The experimentation results from various publications are taken into account evaluating the feasibility of an AHC algorithm to be integrated in a typical commercially available grid-connected Photovoltaic inverter. The comparison results are presented in a table. The results of this paper can be used for further investigation in deciding which particular algorithm to try to implement and experiment with. Pateikta standartų, taikomų paskirstytosioms elektrinėms jungti į žemos įtampos elektros skirstomuosius tinklus, apžvalga. Išnagrinėtas aktyvusis harmonikų kompensavimo (AHK) aspektas, esantis šiuose standartuose. Pateikti harmonikų limitai, kuriuos turi atitikti jungiamos į žemos įtampos elektros tinklą paskirstytosios elektrinės. Apžvelgti skirtingi AHK metodai, pateikta kiekvieno algoritmo analizė. Atsižvelgiant į galimybę AHK įgyvendinti šiuo metu komerciškai gaminamuose saulės elektrinių tinklo inverteriuose (SETI), tarpusavyje palyginti skirtingi AHK pagal algoritmų skaičiavimo intensyvumą, daviklių skaičių, topologiją, maksimaliai kompensuojamų harmonikų skaičių ir priklausomybę nuo apkrovos tipo.


Author(s):  
Jin-Wei Liang ◽  
Hung-Yi Chen ◽  
Lyu-Cyuan Zeng

A hybrid control scheme that combines a self-tuning PID-feedback loop and TDC-based feedforward scheme is proposed in this study to cope with an active pneumatic vibration isolator. In order to establish an effective TDC feedforward control a reliable mathematical model of the pneumatic isolator is required and developed firstly. Numerical and experimental investigations on the validity of the mathematical model are performed. It is found that although slight discrepancy exists between predicted and observed behaviors of the system, the overall model performance is acceptable. The resultant model is then applied in the design of the TDC feedforward scheme. A neuro-based adaptive PID control is integrated with the TDC feedforward algorithm to form the hybrid control. Numerical and experimental isolation tests are carried out to examine the suppression performances of the proposed hybrid control scheme. The results show that the proposed hybrid control method outperforms solely TDC feedforward while the latter outperforms the passive isolation system. Moreover, the proposed hybrid control scheme can suppress the vibration near the system’s resonance.


Sign in / Sign up

Export Citation Format

Share Document