scholarly journals PyAtomDB: Extending the AtomDB Atomic Database to Model New Plasma Processes and Uncertainties

Author(s):  
Adam R. Foster ◽  
Keri Heuer

The AtomDB project provides models of X-ray and EUV emitting astrophysical spectra for optically thin, hot plasma. We present the new software package, PyAtomDB, which now underpins the entire project, providing access to the underlying database, collisional radiative model calculations, and spectrum generation for a range of models. PyAtomDB is easily extensible allowing users to build new tools and models for use in analysis packages such as XSPEC. We present two of these, the kappa and ACX models for non-Maxwellian and Charge-Exchange plasmas respectively. In addition, PyAtomDB allows full open access to the apec code which underlies all of the AtomDB spectra and has enabled development of a module for estimating the sensitivity of emission lines and diagnostic line ratios to uncertainties in the underlying atomic data. We present these publicly available tools and results for several X-ray diagnostics of Fe L-shell ions and He-like ions as examples.

Atoms ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 49
Author(s):  
Adam R. Foster ◽  
Keri Heuer

The AtomDB project provides models of X-ray and extreme ultraviolet emitting astrophysical spectra for optically thin, hot plasma. We present the new software package, PyAtomDB, which now underpins the entire project, providing access to the underlying database, collisional radiative model calculations, and spectrum generation for a range of models. PyAtomDB is easily extensible, allowing users to build new tools and models for use in analysis packages such as XSPEC. We present two of these, the kappa and ACX models for non-Maxwellian and Charge-Exchange plasmas respectively. In addition, PyAtomDB allows for full open access to the apec code, which underlies all of the AtomDB spectra and has enabled the development of a module for estimating the sensitivity of emission lines and diagnostic line ratios to uncertainties in the underlying atomic data. We present these publicly available tools and results for several X-ray diagnostics of Fe L-shell ions and He-like ions as examples.


2004 ◽  
Vol 22 (3) ◽  
pp. 245-251 ◽  
Author(s):  
TAKAKO KATO ◽  
NORIMASA YAMAMOTO ◽  
FRANK B. ROSMEJ

X-ray spectra of H-like Mg ions produced in a laser plasma have been measured by space-resolved high-resolution spectroscopy. We identified satellite lines near Lyα lines, 2lnl′ − 1snl′ +hν forn= 2, 3, and 4. We construct a collisional radiative model including the doubly excited states for the intensity ratios of satellite lines. We use atomic data calculated by different methods for satellite lines and compare the results. We derive the electron temperature and density of the laser-produced plasma by a new technique using intensity ratios of only satellite lines. This technique is useful because the Lyα lines are often affected by opacity.


1988 ◽  
Vol 102 ◽  
pp. 357-360
Author(s):  
J.C. Gauthier ◽  
J.P. Geindre ◽  
P. Monier ◽  
C. Chenais-Popovics ◽  
N. Tragin ◽  
...  

AbstractIn order to achieve a nickel-like X ray laser scheme we need a tool to determine the parameters which characterise the high-Z plasma. The aim of this work is to study gold laser plasmas and to compare experimental results to a collisional-radiative model which describes nickel-like ions. The electronic temperature and density are measured by the emission of an aluminium tracer. They are compared to the predictions of the nickel-like model for pure gold. The results show that the density and temperature can be estimated in a pure gold plasma.


2020 ◽  
Vol 39 (5) ◽  
pp. 194-201
Author(s):  
Ł. Syrocki ◽  
K. Słabkowska ◽  
E. Węder ◽  
M. Polasik ◽  
J. Rzadkiewicz

AbstractIn order to allow the advanced interpretation of the X-ray spectra registered by the high-resolution crystal KX1 spectrometer on the JET with an ITER-like wall, especially to determine how the relative emission contributions of tungsten and molybdenum ions change during a JET discharge, the X-ray spectra have been carefully modeled over a narrow wavelength range. The simulations have been done in the framework of Collisional–Radiative model implemented in Flexible Atomic Code for an electron density (ne = 2.5 × 1019 m−3), and electron temperatures between Te = 3.0 keV and Te = 4.5 keV, typical for JET. Moreover, performed detailed analysis in the framework of the proposed procedure can be useful in determining temperature of a high temperature plasma generated in tokamaks.


Solar flare spectra in the ultraviolet and X-ray wavelength regions are rich in emission lines from highly ionized ions, formed at temperatures around 10 7 K. These lines can be used as valuable diagnostics for probing the physical conditions in solar flares. Such analyses require accurate atomic data for excitation, ionization and recombination processes. In this paper, we present a review of work which has already been carried out, in particular for the Solar Maximum Mission observations, and we look to future requirements for Solar-A .


1997 ◽  
Vol 166 ◽  
pp. 83-90 ◽  
Author(s):  
W.T. Sanders ◽  
R.J. Edgar ◽  
D.A. Liedahl ◽  
J.P. Morgenthaler

AbstractThe Diffuse X-ray Spectrometer (DXS) obtained spectra of the low energy X-ray (44 – 83 Å) diffuse background near the galactic plane from galactic longitudes 150° ≲ l ≲ 300° with ≲ 3 Å spectral resolution and ~ 15° angular resolution. Thus, DXS measured X-ray spectra that arise almost entirely from within the Local Bubble. The DXS spectra show emission lines and emission-line blends, indicating that the source of the X-ray emission is thermal – hot plasma in the Local Bubble. The measured spectra are not consistent with those predicted by standard coronal models, either with solar abundances or depleted abundances, over the temperature range 105 – 107 K. The measured spectra are also inconsistent with the predictions of various non-equilibrium models. A nearly acceptable fit to DXS spectra can be achieved using a hybrid model that combines the Raymond & Smith ionization balance calculation with recently calculated (by DAL) ionic emission lines.


2000 ◽  
Vol 61 (5) ◽  
pp. 5701-5709 ◽  
Author(s):  
D. Pacella ◽  
K. B. Fournier ◽  
M. Zerbini ◽  
M. Finkenthal ◽  
M. Mattioli ◽  
...  

1988 ◽  
Vol 102 ◽  
pp. 95-97
Author(s):  
M. Cornille ◽  
J. Dubau ◽  
M. Loulergue ◽  
S. Jacquemot

AbstractThe Livermore X-ray Laser experiments in 1984 have shown the existence of Ne-like 3p-3s population inversions in a collisional Se plasma (Z=34) with significant gains (5 cm-1). We have focused our efforts on the behavior of the gains along the target neon Isoelectronic sequence. This study implies the determination of the Z-dependance of the rate coefficients of all the Involved atomic processes: collisional excitation (C). radiative decay (A) and dielectronic recombination (αd). Thus we use atomic structure and electron-ion collisional codes (SUPERSTRUCTURE. Distorted Waves. AUTOLSJ and JJOM). The different calculations have been done on a large selection of ions, from Ar to Ag. They Include relatlvistic effects in a fine structure scheme. The Z-dependance of the numerical results is expressed as polynomial or rational forms.


1988 ◽  
Vol 49 (C1) ◽  
pp. C1-95-C1-97
Author(s):  
M. CORNILLE ◽  
J. DUBAU ◽  
M. LOULERGUE ◽  
S. JACQUEMOT

2021 ◽  
pp. 1-15
Author(s):  
Dmitrii Andreevich Kim ◽  
Ilia Yurievich Vichev ◽  
Anna Dmitrievna Solomyannaya ◽  
Alexander Sergeevich Grushin

The THERMOS code was used to calculate the properties of dense photoionized aluminum plasma. The case is based on an experiment carried out at the LCLS, where an aluminum film was irradiated with intense X-ray radiation with a photon energy of 1650 eV using a free-electron laser. The evolution of the aluminum plasma was considered, the populations of states and the emission spectrum were calculated. The main attention was paid to the study of the effects associated with nonstationarity and ionization potentials depression due to high density using collisional-radiative model.


Sign in / Sign up

Export Citation Format

Share Document