scholarly journals Antimicrobial Resistance Genes in Porcine Pasteurella Multocida are not Associated with its Antimicrobial Susceptibility Pattern

Author(s):  
Máximo Patrocchi-Rilo ◽  
César-B. Gutiérrez-Martín ◽  
Esther Pérez-Fernández ◽  
Anna Vilaró ◽  
Lorenzo Fraile ◽  
...  

Forty-eight Pasteurella multocida isolates were recovered from porcine pneumonic lungs collected in Norwestern Spain (2017- 2019). These isolates were characterized for their minimal inhibition concentrations to twelve antimicrobial agents and for the appearance of eight resistance genes: tetA, tetB, blaROB1, blaTEM, ermA, ermC, mphE and msrE. Relevant resistance percentages were shown to teracyclines, sulphamethoxazole/trimethoprim and tiamulin, thus suggesting that P. multocida isolates were mostly susceptible to amoxicillin, ceftiofur, enrofloxacin, florfenicol, marbofloxacin and macrolides. 29.2% of isolates were resistant to more than two antimicrobials. The tetracycline resistance genes (tetA and tetB) were detected in 22.9% of the isolates, but none was positive to both simultaneously; blaROB1 and blaTEM genes were found in one third of isolates but both genes were detected simultaneously in only one isolate. ermC gene was observed in 41.7% of isolates, a percentage that decreased until 22.9% for msrE; finally, ermA was harboured by 16.7% and mphE was not found in any of them. Six clusters were established based on hierarchical clustering analysis on antimicrobial susceptibility for the twelve antimicrobials. Generally, it was unable to foresee the antimicrobial susceptibility pattern for each family and the association of each particular isolate inside the clusters established from the presence or absence of the resistance genes analyzed.

Antibiotics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 614
Author(s):  
Máximo Petrocchi-Rilo ◽  
César-B. Gutiérrez-Martín ◽  
Esther Pérez-Fernández ◽  
Anna Vilaró ◽  
Lorenzo Fraile ◽  
...  

Forty-eight Pasteurella multocida isolates were recovered from porcine pneumonic lungs collected from farms in “Castilla y León” (north-western Spain) in 2017–2019. These isolates were characterized for their minimal inhibition concentrations to twelve antimicrobial agents and for the appearance of eight resistance genes: tetA, tetB, blaROB1, blaTEM, ermA, ermC, mphE and msrE. Relevant resistance percentages were shown against tetracyclines (52.1% for doxycycline, 68.7% for oxytetracycline), sulphamethoxazole/trimethoprim (43.7%) and tiamulin (25.0%), thus suggesting that P. multocida isolates were mostly susceptible to amoxicillin, ceftiofur, enrofloxacin, florfenicol, marbofloxacin and macrolides. Overall, 29.2% of isolates were resistant to more than two antimicrobials. The tetracycline resistance genes (tetA and tetB) were detected in 22.9% of the isolates, but none were positive to both simultaneously; blaROB1 and blaTEM genes were found in one third of isolates but both genes were detected simultaneously in only one isolate. The ermC gene was observed in 41.7% of isolates, a percentage that decreased to 22.9% for msrE; finally, ermA was harbored by 16.7% and mphE was not found in any of them. Six clusters were established based on hierarchical clustering analysis on antimicrobial susceptibility for the twelve antimicrobials. Generally, it was unable to foresee the antimicrobial susceptibility pattern for each family and the association of each particular isolate inside the clusters established from the presence or absence of the resistance genes analyzed.


1996 ◽  
Vol 40 (11) ◽  
pp. 2671-2672 ◽  
Author(s):  
L Martínez-Martínez ◽  
A Pascual ◽  
K Bernard ◽  
A I Suárez

The in vitro activities of 16 antimicrobial agents against 86 strains of Corynebacterium striatum were evaluated by microdilution using cation-adjusted Mueller-Hinton broth. MICs at which 90% of strains were inhibited were 0.06 microgram/ml for teicoplanin, 1 microgram/ml for vancomycin, 0.03 to 8 micrograms/ml for beta-lactams, 8 micrograms/ml for sparfloxacin, 16 micrograms/ml for ciprofloxacin, 16/304 micrograms/ml for co-trimoxazole (trimethoprim-sulfamethoxazole), 64 micrograms/ml for tetracycline, 128 micrograms/ml for gentamicin, and > 128 micrograms/ml for amikacin, erythromycin, and rifampin.


Genes ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 548
Author(s):  
Liam J. Reynolds ◽  
Muna F. Anjum ◽  
Adam P. Roberts

Tn916 is a conjugative transposon (CTn) and the first reported and most well characterised of the Tn916/Tn1545 family of CTns. Tn916-like elements have a characteristic modular structure and different members of this family have been identified based on similarities and variations in these modules. In addition to carrying genes encoding proteins required for their conjugation, Tn916-like elements also carry accessory, antimicrobial resistance genes; most commonly the tetracycline resistance gene, tet(M). Our study aimed to identify and characterise tetracycline resistance genes from the human saliva metagenome using a functional metagenomic approach. We identified a tetracycline-resistant clone, TT31, the sequencing of which revealed it to encode both tet(M) and tet(L). Comparison of the TT31 sequence with the accessory, regulation, and recombination modules of other Tn916-like elements indicated that a partial Tn916-like element encoding a truncated orf9 was cloned in TT31. Analysis indicated that a previous insertion within the truncated orf9 created the full length orf9 found in most Tn916-like transposons; demonstrating that orf9 is, in fact, the result of a gene fusion event. Thus, we hypothesise that the Tn916-like element cloned in TT31 likely represents an ancestral Tn916.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
R. V. Pereira ◽  
C. Foditsch ◽  
J. D. Siler ◽  
S. C. Dulièpre ◽  
C. Altier ◽  
...  

Abstract The objective of this study was to evaluate the longitudinal effect of enrofloxacin or tulathromycin use in calves at high risk of bovine respiratory disease (BRD) on antimicrobial resistance genes and mutation in quinolone resistance-determining regions (QRDR) in fecal E. coli. Calves at high risk of developing BRD were randomly enrolled in one of three groups receiving: (1) enrofloxacin (ENR; n = 22); (2) tulathromycin (TUL; n = 24); or (3) no treatment (CTL; n = 21). Fecal samples were collected at enrollment and at 7, 28, and 56 days after beginning treatment, cultured for Escherichiacoli (EC) and DNA extracted. Isolates were screened for cephalosporin, quinolone and tetracycline resistance genes using PCR. QRDR screening was conducted using Sanger sequencing. The only resistance genes detected were aac(6′)Ib-cr (n = 13), bla-CTX-M (n = 51), bla-TEM (n = 117), tetA (n = 142) and tetB (n = 101). A significantly higher detection of gyrA mutated at position 248 at time points 7 (OR = 11.5; P value = 0.03) and 28 (OR = 9.0; P value = 0.05) was observed in the ENR group when compared to calves in the control group. Our findings support a better understanding of the potential impacts from the use of enrofloxacin in calves on the selection and persistence of resistance.


1970 ◽  
Vol 1 (2) ◽  
pp. 190-194
Author(s):  
Marian W. Wolfe ◽  
Daniel Amsterdam

Plaques similar in appearance to those induced by phage were observed adjacent to chloramphenicol and tetracycline discs on Pseudomonas aeruginosa lawns used for the determination of antibiotic susceptibility. Thirteen strains were selected for study, 10 of which exhibited the plaquing phenomenon. The ability to form plaques induced by tetracycline was not related to any of the biochemical properties of the strains studied, their overall antimicrobial susceptibility pattern, or their pathological source. Some pseudomonad strains were capable of pyocin production; however, the relationship between plaque formation and pyocin production was not apparent. Supernatant fluids of resuspended plaque contents of eight strains originally demonstrating clearings could induce plaques on sensitive indicator lawns only when collected from tetracycline-induced plaque areas; supernatant fluids of the same strains could not produce clearings without previous exposure to the drug. Of the eight supernatant fluids capable of plaque induction, three were active on their homologous indicator lawns. In a subsequent survey of 95 P. aeruginosa strains, it was found that 28 isolates exhibited plaques. Of these, 17 were associated with tetracycline, 7 were associated with chloramphenicol, 3 were associated with triple sulfa; and 1 was associated with nalidixic acid.


2003 ◽  
Vol 47 (3) ◽  
pp. 883-888 ◽  
Author(s):  
Claudio D. Miranda ◽  
Corinna Kehrenberg ◽  
Catherine Ulep ◽  
Stefan Schwarz ◽  
Marilyn C. Roberts

ABSTRACT Twenty-five distinct tetracycline-resistant gram-negative bacteria recovered from four Chilean fish farms with no history of recent antibiotic use were examined for the presence of tetracycline resistance (tet) genes. Sixty percent of the isolates carried 1 of the 22 known tet genes examined. The distribution was as follows. The tet(A) gene was found in six isolates. The tet(B) gene was found in two isolates, including the first description in the genus Brevundimonas. Two isolates carried the tet(34) and tet(B) genes, including the first description of the tet(34) gene in Pseudomonas and Serratia and the first description of the tet(B) gene in Pseudomonas. The tet(H) gene was found in two isolates, which includes the first description in the genera Moraxella and Acinetobacter. One isolate carried tet(E), and one isolate carried tet(35), the first description of the gene in the genus Stenotrophomonas. Finally, one isolate carried tet(L), found for the first time in the genus Morganella. By DNA sequence analysis, the two tet(H) genes were indistinguishable from the previously sequenced tet(H) gene from Tn5706 found in Pasteurella multocida. The Acinetobacter radioresistens isolate also harbored the Tn5706-associated 1,063-bp IS element IS1597, while the Moraxella isolate carried a 1,026-bp IS-like element whose 293-amino-acid transposase protein exhibited 69% identity and 84% similarity to the transposase protein of IS1597, suggesting the presence of a novel IS element. The distribution of tet genes from the Chilean freshwater ponds was different than those that have previously been described from other geographical locations, with 40% of the isolates carrying unidentified tetracycline resistance genes.


Sign in / Sign up

Export Citation Format

Share Document