scholarly journals Suitable Habitat Modeling of Prehistoric Antelope-like Bovid Duboisia Santeng in Java Island in The Early Pleistocene

Author(s):  
Andri Wibowo

The migration routes have facilitated the distribution of mammals from south east Asian mainland to the Sundaland including Java island in the early Pleistocene. One of species that has migrated through that route is antelope-like bovid Duboisia santeng. In the present study, the potential distribution areas and the suitable habitats of D. santeng have been projected and modeled. The modeled habitat was a forest river basin sizing 302.91 Ha in the central of Java island. The model has classified and reconstructed the habitat suitability ranged from low to high back to Pleistocene. The surrounding areas of forest were mostly classified as medium and low related to the limited tree covers. Most suitable habitats were identified in the middle of forest river basin where the tree covers were presented

Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1604
Author(s):  
Sun Hee Hong ◽  
Yong Ho Lee ◽  
Gaeun Lee ◽  
Do-Hun Lee ◽  
Pradeep Adhikari

Predicting the distribution of invasive weeds under climate change is important for the early identification of areas that are susceptible to invasion and for the adoption of the best preventive measures. Here, we predicted the habitat suitability of 16 invasive weeds in response to climate change and land cover changes in South Korea using a maximum entropy modeling approach. Based on the predictions of the model, climate change is likely to increase habitat suitability. Currently, the area of moderately suitable and highly suitable habitats is estimated to be 8877.46 km2, and 990.29 km2, respectively, and these areas are expected to increase up to 496.52% by 2050 and 1439.65% by 2070 under the representative concentration pathways 4.5 scenario across the country. Although habitat suitability was estimated to be highest in the southern regions (<36° latitude), the central and northern regions are also predicted to have substantial increases in suitable habitat areas. Our study revealed that climate change would exacerbate the threat of northward weed invasions by shifting the climatic barriers of invasive weeds from the southern region. Thus, it is essential to initiate control and management strategies in the southern region to prevent further invasions into new areas.


2021 ◽  
Vol 8 ◽  
Author(s):  
Mary C. Fabrizio ◽  
Troy D. Tuckey ◽  
Aaron J. Bever ◽  
Michael L. MacWilliams

The sustained production of sufficient forage is critical to advancing ecosystem-based management, yet factors that affect local abundances and habitat conditions necessary to support aggregate forage production remain largely unexplored. We quantified suitable habitat in the Chesapeake Bay and its tidal tributaries for four key forage fishes: juvenile spotted hake Urophycis regia, juvenile spot Leiostomus xanthurus, juvenile weakfish Cynoscion regalis, and bay anchovy Anchoa mitchilli. We used information from monthly fisheries surveys from 2000 to 2016 coupled with hindcasts from a spatially interpolated model of dissolved oxygen and a 3-D hydrodynamic model of the Chesapeake Bay to identify influential covariates and construct habitat suitability models for each species. Suitable habitat conditions resulted from a complex interplay between water quality and geophysical properties of the environment and varied among species. Habitat suitability indices ranging between 0 (poor) and 1 (superior) were used to estimate seasonal and annual extents of suitable habitats. Seasonal variations in suitable habitat extents in Chesapeake Bay, which were more pronounced than annual variations during 2000–2016, reflected the phenology of estuarine use by these species. Areas near shorelines served as suitable habitats in spring for juvenile spot and in summer for juvenile weakfish, indicating the importance of these shallow areas for production. Tributaries were more suitable for bay anchovy in spring than during other seasons. The relative baywide abundances of juvenile spot and bay anchovy were significantly related to the extent of suitable habitats in summer and winter, respectively, indicating that Chesapeake Bay habitats may be limiting for these species. In contrast, the relative baywide abundances of juvenile weakfish and juvenile spotted hake varied independently of the spatial extent of suitable habitats. In an ecosystem-based approach, areas that persistently provide suitable conditions for forage species such as shoreline and tributary habitats may be targeted for protection or restoration, thereby promoting sufficient production of forage for predators. Further, quantitative habitat targets or spatial thresholds may be developed for habitat-limited species using estimates of the minimum habitat area required to produce a desired abundance or biomass; such targets or thresholds may serve as spatial reference points for management.


2020 ◽  
Author(s):  
Cao Zhen ◽  
Zhang Xiaoyan ◽  
Xue Xuanji ◽  
Zhang Lei ◽  
Zhan Guanqun ◽  
...  

Abstract Background: To understand the potential distribution and habitat suitability of H. japonica in China. And to provide guidance for the wild cultivation and standardized planting of H. japonica. Methods: The maximum entropy model (Maxent) and geographic information system (ArcGIS) were applied to predict the potential suitable habitat of H. japonica species, and the contribution of variables were evaluated by using the jackknife test. Results: The AUC value confirmed the accuracy of the model prediction based on 101 occurrence records. The potential distributions of H. japonica were mainly concentrated in Jilin, Liaoning, Shaanxi and other provinces (adaptability index>0.6). Jackknife experiment showed that the precipitation of driest month (35.6%), precipitation of wettest quarter (13.4%), the mean annual temperature (7.8%) and the subclass of soil (7.8%) were the most important factors affecting the potential distribution of H. japonica. Conclusion: The niche parameters of the most suitable growth area (adaptability index>0.8) for H. japonica were precipitation of driest month (5 mm), precipitation of wettest quarter (400-490 mm), the mean annual temperature (-2-4 °C) and the subclass of soil (Glossy Chernozem, Gleyic Lime, Haplic Gypsisols).


2018 ◽  
Vol 75 (5) ◽  
pp. 1722-1732 ◽  
Author(s):  
Azzurra Bastari ◽  
Daniela Pica ◽  
Francesco Ferretti ◽  
Fiorenza Micheli ◽  
Carlo Cerrano

Abstract The aim of this study is to synthesize available information on sea pens in the Mediterranean Sea and fill existing knowledge gaps through modelling of suitable habitat, with the overarching goal of informing strategies for protecting sea pen habitats from trawling impacts and facilitating their recovery. A review spanning the last 30 years was conducted to map the distribution of Mediterranean sea pen species. In the Adriatic Sea, presence–absence data were modelled with generalized additive models (GAMs) to identify potentially suitable habitats for Funiculina quadrangularis, Virgularia mirabilis, and Pennatula spp. Results show that sea pen distribution in the Mediterranean is mainly limited to continental northern shelves. Six species have been recorded throughout the Adriatic basin, where habitat suitability models confirm that its soft bottoms yield favourable conditions for sea pen assemblages. This information can help guide strategies for diminishing and reversing the impacts of bottom trawling on these vulnerable habitats.


Forests ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 989 ◽  
Author(s):  
Louis R. Iverson ◽  
Anantha M. Prasad ◽  
Matthew P. Peters ◽  
Stephen N. Matthews

We modeled and combined outputs for 125 tree species for the eastern United States, using habitat suitability and colonization potential models along with an evaluation of adaptation traits. These outputs allowed, for the first time, the compilation of tree species’ current and future potential for each unit of 55 national forests and grasslands and 469 1 × 1 degree grids across the eastern United States. A habitat suitability model, a migration simulation model, and an assessment based on biological and disturbance factors were used with United States Forest Service Forest Inventory and Analysis data to evaluate species potential to migrate or infill naturally into suitable habitats over the next 100 years. We describe a suite of variables, by species, for each unique geographic unit, packaged as summary tables describing current abundance, potential future change in suitable habitat, adaptability, and capability to cope with the changing climate, and colonization likelihood over 100 years. This resulting synthesis and summation effort, culminating over two decades of work, provides a detailed data set that incorporates habitat quality, land cover, and dispersal potential, spatially constrained, for nearly all the tree species of the eastern United States. These tables and maps provide an estimate of potential species trends out 100 years, intended to deliver managers and publics with practical tools to reduce the vast set of decisions before them as they proactively manage tree species in the face of climate change.


2021 ◽  
Vol 45 (2) ◽  
pp. 241-250
Author(s):  
Ciprian Bîrsan ◽  
Constantin Mardari ◽  
Ovidiu Copoţ ◽  
Cătălin Tănase

Clathrus archeri is a saprophytic fungus native to the southern hemisphere which was introduced in Europe in the early twentieth century. Although it is naturalized in most regions of Central Europe, in Romania it is considered rather a rare species because it has been identified in only a few localities. Because of the rapid expansion of its range throughout Europe some authors assign this species an invasive potential. The objective of the paper was to identify both the potential distribution area and the potential suitable habitats for expansion in Romania and to highlight the environmental variables driving the probability of its occurrence. The maximum entropy model approach implemented in Maxent was used to model the species? potential distribution. The results highlighted altitude, snow cover length, the mean temperature of the driest quarter, and precipitation in the coldest quarter as the most important predictors of species? potential distribution in Romania. The map of the predicted distribution showed that the highest probability of occurrence for this species is in the mountainous and adjacent areas, while the map of habitat suitability confirmed that the best environmental conditions are in the Carpathians, while the most unfavourable are in the south-eastern regions of the country.


Author(s):  
Andri Wibowo

In the late Pleistocene, a prehistoric hippo species was distributed from Africa to the Asia including Pakistan, India, and Java island. This study aims to model habitat suitability of Asian hippo known as a Hippopotamus sivalensis spp. in east Java. The measured parameters included the fossil locality, vegetation cover, elevation, and distance to the river in a forest river basin sizing 6652 Ha. Those parameters using GIS were weighted, overlaid, and interpolated to determine the most suitable habitats. The model projected that the suitable habitats of H. sivalensis spp. were in the central of the basin near the river. The largest suitable habitats were located in the eastern parts of basin which were dominated by forests


2021 ◽  
Vol 42 (3(SI)) ◽  
pp. 798-805
Author(s):  
N.A.T. Ariffin ◽  
◽  
M.A. Mustapha ◽  
T.M. Taher ◽  
N.F. Khodri ◽  
...  

Aim: To predict the distribution of suitable habitats for Malayan gaur (Bos gaurus) at a highly fragmented forest area in Peninsular Malaysia and to identify the potential connectivity between suitable habitat patches. Methodology: Maximum entropy (MaxEnt) approach was used to predict the distribution of suitable habitats of the Malayan gaur. Gaur presence-only data and six environmental variables were collated for the habitat suitability modeling, and area under curve (AUC) value was used to estimate the performance of the model. The resulting model was then used to derive a potential connectivity map through least-cost analysis using Corridor Designer toolbox in ArcGIS 10.4. Results: The AUC value of the habitat suitability model was 0.84. Distance from urban areas indicated the highest relative contribution to the model (26.9%), followed by distance from water body (24.2%) land use (18.0%) elevation (14.3%), slope (14.0%) and lithology (2.6%). Predicted suitable habitats for gaur were found mostly in lowland forest areas, especially in the vicinity of rivers within forest reserves. A total of five wildland blocks were derived from the habitat suitability model, and several potential corridor swaths were identified connecting the wildland blocks. Interpretation: The absence of gaur occurrence in suitable habitats suggest that fragmented habitats greatly affected gaur distribution and population. Road network and agricultural lands are the major barriers of gaur movement as they are very sensitive towards disturbances and conflict. Thus, this research proposes potential connectivity at a regional scale for Malayan gaur for use in future planning in conservation, management and development.


2019 ◽  
Vol 374 (1788) ◽  
pp. 20190215 ◽  
Author(s):  
Sophie Monsarrat ◽  
Peter Novellie ◽  
Ian Rushworth ◽  
Graham Kerley

Setting appropriate conservation measures to halt the loss of biodiversity requires a good understanding of species' habitat requirements and potential distribution. Recent (past few decades) ecological data are typically used to estimate and understand species’ ecological niches. However, historical local extinctions may have truncated species–environment relationships, resulting in a biased perception of species' habitat preferences. This may result in incorrect assessments of the area potentially available for their conservation. Incorporating long-term (centuries-old) occurrence records with recent records may provide better information on species–environment relationships and improve the modelling and understanding of habitat suitability. We test whether neglecting long-term occurrence records leads to an underestimation of species’ historical niche and potential distribution and identify which species are more vulnerable to this effect. We compare outputs of species distribution models and niche hypervolumes built using recent records only with those built using both recent and long-term (post-1500) records, for a set of 34 large mammal species in South Africa. We find that, while using recent records only is adequate for some species, adding historical records in the analyses impacts estimates of the niche and habitat suitability for 12 species (34%) in our dataset, and that this effect is significantly higher for carnivores. These results show that neglecting long-term biodiversity records in spatial analyses risks misunderstanding, and generally underestimating, species' niches, which in turn may lead to ill-informed management decisions, with significant implications for the effectiveness of conservation efforts. This article is part of a discussion meeting issue ‘The past is a foreign country: how much can the fossil record actually inform conservation?’


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Sayyad Sheykhi Ilanloo ◽  
Sohrab Ashrafi ◽  
Afshin Alizadeh Shabani

Identifying suitable habitats of species is essential knowledge to conserve them successfully. Human activities causes the reduction of population size and habitat suitability of many species. Red-backed Shrike is a widespread in western Palearctic. However, the population of this specie has declined in its geographical range due to the loss of suitable habitats. Therefore, it is necessary to identify its suitable habitats and factors affecting species habitat suitability and to protect its reduction population size. The aim of the present study was to identify the suitable habitat of the Red-backed Shrike and determine the most important predictors of its suitable habitat in Irano-Anatolian biodiversity hotspot. To achieve this goal, species presence points were first collected and seven environmental variables related to climate, topography and anthropogenic activities, were used to construct the species habitat suitable model. Models were built using five distribution modeling methods: Maxent, GAP, GLM, RF and GBM in sdm package. Then the models were Ensemble from 5 different models and the final model was constructed. The results of this study showed that the most suitable habitats of this species are in the western and northern parts of the area of study. The mean annual temperature with 41% contribution was the most important variable in constructing the habitat suitability model for this specie. In addition, climate variables with 75% contribution were identified as the most important habitat suitability factor for this specie. Also in relation to conservation of the Red-backed Shrike species in the Irano-Anatolian region, it can be stated that the extent of distribution and presence of this specie has been extended to the northern latitudes due to climate change. As a result, the temperature and climate factor should be given special attention in the management of bird habitats in this area. 


Sign in / Sign up

Export Citation Format

Share Document