scholarly journals Predicting Impacts of Climate Change on Northward Range Expansion of Invasive Weeds in South Korea

Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1604
Author(s):  
Sun Hee Hong ◽  
Yong Ho Lee ◽  
Gaeun Lee ◽  
Do-Hun Lee ◽  
Pradeep Adhikari

Predicting the distribution of invasive weeds under climate change is important for the early identification of areas that are susceptible to invasion and for the adoption of the best preventive measures. Here, we predicted the habitat suitability of 16 invasive weeds in response to climate change and land cover changes in South Korea using a maximum entropy modeling approach. Based on the predictions of the model, climate change is likely to increase habitat suitability. Currently, the area of moderately suitable and highly suitable habitats is estimated to be 8877.46 km2, and 990.29 km2, respectively, and these areas are expected to increase up to 496.52% by 2050 and 1439.65% by 2070 under the representative concentration pathways 4.5 scenario across the country. Although habitat suitability was estimated to be highest in the southern regions (<36° latitude), the central and northern regions are also predicted to have substantial increases in suitable habitat areas. Our study revealed that climate change would exacerbate the threat of northward weed invasions by shifting the climatic barriers of invasive weeds from the southern region. Thus, it is essential to initiate control and management strategies in the southern region to prevent further invasions into new areas.

Forests ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 989 ◽  
Author(s):  
Louis R. Iverson ◽  
Anantha M. Prasad ◽  
Matthew P. Peters ◽  
Stephen N. Matthews

We modeled and combined outputs for 125 tree species for the eastern United States, using habitat suitability and colonization potential models along with an evaluation of adaptation traits. These outputs allowed, for the first time, the compilation of tree species’ current and future potential for each unit of 55 national forests and grasslands and 469 1 × 1 degree grids across the eastern United States. A habitat suitability model, a migration simulation model, and an assessment based on biological and disturbance factors were used with United States Forest Service Forest Inventory and Analysis data to evaluate species potential to migrate or infill naturally into suitable habitats over the next 100 years. We describe a suite of variables, by species, for each unique geographic unit, packaged as summary tables describing current abundance, potential future change in suitable habitat, adaptability, and capability to cope with the changing climate, and colonization likelihood over 100 years. This resulting synthesis and summation effort, culminating over two decades of work, provides a detailed data set that incorporates habitat quality, land cover, and dispersal potential, spatially constrained, for nearly all the tree species of the eastern United States. These tables and maps provide an estimate of potential species trends out 100 years, intended to deliver managers and publics with practical tools to reduce the vast set of decisions before them as they proactively manage tree species in the face of climate change.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 84
Author(s):  
Huanchu Liu ◽  
Hans Jacquemyn ◽  
Xingyuan He ◽  
Wei Chen ◽  
Yanqing Huang ◽  
...  

Human pressure on the environment and climate change are two important factors contributing to species decline and overall loss of biodiversity. Orchids may be particularly vulnerable to human-induced losses of habitat and the pervasive impact of global climate change. In this study, we simulated the extent of the suitable habitat of three species of the terrestrial orchid genus Cypripedium in northeast China and assessed the impact of human pressure and climate change on the future distribution of these species. Cypripedium represents a genus of long-lived terrestrial orchids that contains several species with great ornamental value. Severe habitat destruction and overcollection have led to major population declines in recent decades. Our results showed that at present the most suitable habitats of the three species can be found in Da Xing’an Ling, Xiao Xing’an Ling and in the Changbai Mountains. Human activity was predicted to have the largest impact on species distributions in the Changbai Mountains. In addition, climate change was predicted to lead to a shift in distribution towards higher elevations and to an increased fragmentation of suitable habitats of the three investigated Cypripedium species in the study area. These results will be valuable for decision makers to identify areas that are likely to maintain viable Cypripedium populations in the future and to develop conservation strategies to protect the remaining populations of these enigmatic orchid species.


2021 ◽  
Vol 8 ◽  
Author(s):  
Mary C. Fabrizio ◽  
Troy D. Tuckey ◽  
Aaron J. Bever ◽  
Michael L. MacWilliams

The sustained production of sufficient forage is critical to advancing ecosystem-based management, yet factors that affect local abundances and habitat conditions necessary to support aggregate forage production remain largely unexplored. We quantified suitable habitat in the Chesapeake Bay and its tidal tributaries for four key forage fishes: juvenile spotted hake Urophycis regia, juvenile spot Leiostomus xanthurus, juvenile weakfish Cynoscion regalis, and bay anchovy Anchoa mitchilli. We used information from monthly fisheries surveys from 2000 to 2016 coupled with hindcasts from a spatially interpolated model of dissolved oxygen and a 3-D hydrodynamic model of the Chesapeake Bay to identify influential covariates and construct habitat suitability models for each species. Suitable habitat conditions resulted from a complex interplay between water quality and geophysical properties of the environment and varied among species. Habitat suitability indices ranging between 0 (poor) and 1 (superior) were used to estimate seasonal and annual extents of suitable habitats. Seasonal variations in suitable habitat extents in Chesapeake Bay, which were more pronounced than annual variations during 2000–2016, reflected the phenology of estuarine use by these species. Areas near shorelines served as suitable habitats in spring for juvenile spot and in summer for juvenile weakfish, indicating the importance of these shallow areas for production. Tributaries were more suitable for bay anchovy in spring than during other seasons. The relative baywide abundances of juvenile spot and bay anchovy were significantly related to the extent of suitable habitats in summer and winter, respectively, indicating that Chesapeake Bay habitats may be limiting for these species. In contrast, the relative baywide abundances of juvenile weakfish and juvenile spotted hake varied independently of the spatial extent of suitable habitats. In an ecosystem-based approach, areas that persistently provide suitable conditions for forage species such as shoreline and tributary habitats may be targeted for protection or restoration, thereby promoting sufficient production of forage for predators. Further, quantitative habitat targets or spatial thresholds may be developed for habitat-limited species using estimates of the minimum habitat area required to produce a desired abundance or biomass; such targets or thresholds may serve as spatial reference points for management.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Bikram Shrestha ◽  
Pavel Kindlmann

AbstractThe snow leopard is one of the most endangered large mammals. Its population, already low, is declining, most likely due to the consequences of human activity, including a reduction in the size and number of suitable habitats. With climate change, habitat loss may escalate, because of an upward shift in the tree line and concomitant loss of the alpine zone, where the snow leopard lives. Migration between suitable areas, therefore, is important because a decline in abundance in these areas may result in inbreeding, fragmentation of populations, reduction in genetic variation due to habitat fragmentation, loss of connectivity, bottlenecks or genetic drift. Here we use our data collected in Nepal to determine the areas suitable for snow leopards, by using habitat suitability maps, and describe the genetic structure of the snow leopard within and between these areas. We also determine the influence of landscape features on the genetic structure of its populations and reveal corridors connecting suitable areas. We conclude that it is necessary to protect these natural corridors to maintain the possibility of snow leopards’ migration between suitable areas, which will enable gene flow between the diminishing populations and thus maintain a viable metapopulation of snow leopards.


2011 ◽  
Vol 17 (1) ◽  
pp. 54 ◽  
Author(s):  
Alexander Gold ◽  
Daniel Ramp ◽  
Shawn W Laffan

Invasive weeds represent one of the greatest threats to ecosystem integrity worldwide, with climate change predicted to allow expansion of weed ranges in coming decades. One of Australia’s worst weeds is lantana (Lantana camara) which, given the potential for climatic change, is of increasing concern to those managing the mountainous regions in the country’s southeast. In order to identify potential additional threats lantana may pose for Australia’s valued biodiversity, this research develops a habitat suitability model for lantana in a portion of the Greater Blue Mountains World Heritage Area under current and simulated warmer conditions. Minimum temperature was found to be the most important predictor correlated with potential lantana establishment, explaining over 88% of the variation in lantana presence predicted by the model. Currently, 8% of the study area was found to be suitable for lantana, with this figure reaching 94% after a simulated 2°C rise in temperature anticipated by 2050. The sharp increase in suitable habitat highlights the importance of keeping the weed’s range restricted in the study area. The strong link between temperature and predicted lantana establishment confirms prior research and further stresses the threat this weed poses to the area’s biodiversity values as the climate warms. In addition, the model identified low-lying riparian areas as potential incursion pathways for the weed to travel further inland. Given the weed’s invasiveness, potential for adverse impacts, and high capacity for dispersal, these pathways should not be overlooked when monitoring potential invasion of mountainous regions by lantana and other tropical weeds.


Forests ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 705 ◽  
Author(s):  
Ying Guo ◽  
Jing Guo ◽  
Xin Shen ◽  
Guibin Wang ◽  
Tongli Wang

Ginkgo (Ginkgo biloba L.) is not only considered a ‘living fossil’, but also has important ecological, economic, and medicinal values. However, the impact of climate change on the performance and distribution of this plant is an increasing concern. In this study, we developed a bioclimatic model based on data about the occurrence of ginkgo from 277 locations, and validated model predictions using a wide-ranging field test (12 test sites, located at the areas from 22.49° N to 39.32° N, and 81.11° E to 123.53° E). We found that the degree-days below zero were the most important climate variable determining ginkgo distribution. Based on the model predictions, we classified the habitat suitability for ginkgo into four categories (high, medium, low, and unsuitable), accounting for 9.29%, 6.09%, 8.46%, and 76.16% of China’s land area, respectively. The ANOVA results of the validation test showed significant differences in observed leaf-traits among the four habitat types (p < 0.05), and importantly the rankings of the leaf traits were consistent with our classification of the habitat suitability, suggesting the effectiveness of our classification in terms of biological and economic significance. In addition, we projected that suitable (high and medium) habitats for ginkgo would shrink and shift northward under both the RCP4.5 and RCP8.5 climate change scenarios for three future periods (the 2020s, 2050s, and 2080s). However, the area of low-suitable habitat would increase, resulting in a slight decrease in unsuitable habitats. Our findings contribute to a better understanding of climate change impact on this plant and provide a scientific basis for developing adaptive strategies for future climate.


2018 ◽  
Vol 75 (5) ◽  
pp. 1722-1732 ◽  
Author(s):  
Azzurra Bastari ◽  
Daniela Pica ◽  
Francesco Ferretti ◽  
Fiorenza Micheli ◽  
Carlo Cerrano

Abstract The aim of this study is to synthesize available information on sea pens in the Mediterranean Sea and fill existing knowledge gaps through modelling of suitable habitat, with the overarching goal of informing strategies for protecting sea pen habitats from trawling impacts and facilitating their recovery. A review spanning the last 30 years was conducted to map the distribution of Mediterranean sea pen species. In the Adriatic Sea, presence–absence data were modelled with generalized additive models (GAMs) to identify potentially suitable habitats for Funiculina quadrangularis, Virgularia mirabilis, and Pennatula spp. Results show that sea pen distribution in the Mediterranean is mainly limited to continental northern shelves. Six species have been recorded throughout the Adriatic basin, where habitat suitability models confirm that its soft bottoms yield favourable conditions for sea pen assemblages. This information can help guide strategies for diminishing and reversing the impacts of bottom trawling on these vulnerable habitats.


Forests ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 622 ◽  
Author(s):  
Xian-Ge Hu ◽  
Jian-Feng Mao ◽  
Yousry A. El-Kassaby ◽  
Kai-Hua Jia ◽  
Si-Qian Jiao ◽  
...  

Knowledge about the local adaptation and response of forest tree populations to the climate is important for assessing the impact of climate change and developing adaptive genetic resource management strategies. However, such information is not available for most plant species. Here, based on 69 provenances tested at 19 common garden experimental sites, we developed a universal response function (URF) for tree height at seven years of age for the important and wide-spread native Chinese tree species Platycladus orientalis (L.) Franco. URF was recently used to predict the potential growth response of a population originating from any climate and growing in any climate conditions. The developed model integrated both genetic and environmental effects, and explained 55% of the total variation in tree height observed among provenances and test sites in China. We found that local provenances performed better than non-local counterparts in habitats located in central, eastern, and southwestern China, showing the evidence of local adaptation as compared to other regions. In contrast, non-local provenances outperformed local ones in peripheral areas in northern and northwestern China, suggesting an adaptational lag in these areas. Future projections suggest that the suitable habitat areas of P. orientalis would expand by 15%–39% and shift northward by 0.8–3 degrees in latitude; however, the projected tree height of this species would decline by 4%–8% if local provenances were used. If optimal provenances were used, tree height growth could be improved by 13%–15%, along with 59%–71% suitable habitat expansion. Thus, assisted migration with properly selected seed sources would be effective in avoiding maladaptation in new plantations under a changing climate for P. orientalis.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242432
Author(s):  
Maryam Morovati ◽  
Peyman Karami ◽  
Fatemeh Bahadori Amjas

Climate change, as an emerging phenomenon, has led to changes in the distribution, movement, and even risk of extinction of various wildlife species and this has raised concerns among conservation biologists. Different species have two options in the face of climate change, either to adopt or follow their climatic niche to new places through the connectivity of habitats. The modeling of interpatch landscape communications can serve as an effective decision support tool for wildlife managers. This study was conducted to assess the effects of climate change on the distribution and habitat connectivity of the endangered subspecies of Asian black bear (Ursus thibetanus gedrosianus) in the southern and southeastern Iran. The presence points of the species were collected in Provinces of Kerman, Hormozgan, and Sistan-Baluchestan. Habitat modeling was done by the Generalized Linear Model, and 3 machine learning models including Maximum Entropy, Back Propagation based artificial Neural Network, and Support Vector Machine. In order to achieve the ensemble model, the results of the mentioned models were merged based on the method of “accuracy rate as weight” derived from their validation. To construct pseudo-absence points for the use in the mentioned models, the Ensemble model of presence-only models was used. The modeling was performed using 15 habitat variables related to climatic, vegetation, topographic, and anthropogenic parameters. The three general circulation models of BCC-CSM1, CCSM4, and MRI-CGCM3 were selected under the two scenarios of RCP2.6 and RCP8.5 by 2070. To investigate the effect of climate change on the habitat connections, the protected areas of 3 provinces were considered as focal nodes and the connections between them were established based on electrical circuit theory and Pairwise method. The true skill statistic was employed to convert the continuous suitability layers to binary suitable/unsuitable range maps to assess the effectiveness of the protected areas in the coverage of suitable habitats for the species. Due to the high power of the stochastic forest model in determining the importance of variables, this method was used. The results showed that presence/absence models were successful in the implementation and well distinguished the points of presence and pseudo-absence from each other. Based on the random forests model, the variables of Precipitation of Driest Quarter, Precipitation of Coldest Quarter, and Temperature Annual Range have the greatest impact on the habitat suitability. Comparing the modeling findings to the realities of the species distribution range indicated that the suitable habitats are located in areas with high humidity and rainfall, which are mostly in the northern areas of Bandar Abbas, south of Kerman, and west and south of Sistan-Baluchestan. The area of suitable habitats, in the MRI-CGCM3 (189731 Km2) and CCSM4 (179007 Km2) models under the RCP2.6 scenario, is larger than the current distribution (174001 Km2). However, in terms of the performance of protected areas, the optimal coverage of the species by the boundary of the protected areas, under each of the RCP2.6 and RCP8.5 scenarios, is less than the present time. According to the electric circuit theory, connecting the populations in the protected areas of Sistan-Baluchestan province to those in the northern Hormozgan and the southern Kerman would be based on the crossing through the heights of Sistan-Baluchestan and Hormozgan provinces and the plains between these heights would be the movement pinch points under the current and future scenarios. Populations in the protected areas of Kerman have higher quality patch connections than that of the other two provinces. The areas such as Sang-e_Mes, Kouh_Shir, Zaryab, and Bahr_Aseman in Kerman Province and Kouhbaz and Geno in Hormozgan Province can provide suitable habitats for the species in the distribution models. The findings revealed that the conservation of the heights along with the caves inside them could be a protective priority to counteract the effects of climate change on the species.


Sign in / Sign up

Export Citation Format

Share Document