scholarly journals Habitat Suitability Model of Prehistoric Asian Hippo Hippopotamus sivalensis spp. From The Late Pleistocene of East Java

Author(s):  
Andri Wibowo

In the late Pleistocene, a prehistoric hippo species was distributed from Africa to the Asia including Pakistan, India, and Java island. This study aims to model habitat suitability of Asian hippo known as a Hippopotamus sivalensis spp. in east Java. The measured parameters included the fossil locality, vegetation cover, elevation, and distance to the river in a forest river basin sizing 6652 Ha. Those parameters using GIS were weighted, overlaid, and interpolated to determine the most suitable habitats. The model projected that the suitable habitats of H. sivalensis spp. were in the central of the basin near the river. The largest suitable habitats were located in the eastern parts of basin which were dominated by forests

2016 ◽  
Vol 27 (2) ◽  
pp. 294-304 ◽  
Author(s):  
MASOUD YOUSEFI ◽  
MOHSEN AHMADI ◽  
ELHAM NOURANI ◽  
ALI REZAEI ◽  
ANOOSHE KAFASH ◽  
...  

SummaryWe developed a habitat suitability model for wintering populations of the Asian Houbara Bustard Chlamydotis macqueenii in Iran and determined environmental variables affecting its occurrence. Our results indicate that various patches in central, western and eastern Iran provide the most suitable habitats for the Houbara. Annual precipitation, slope and distance to croplands were the most important variables for predicting Houbara occurrence. We also determined the effects future climate changes on the distribution of the Houbara in Iran. Results showed that suitable habitats for the wintering Houbara will increase in Iran, but will also considerably shift under future climatic conditions. The distribution maps that we present for the present and future climatic conditions can have important implications for the conservation and management of Houbara populations in Iran.


2021 ◽  
Vol 42 (3(SI)) ◽  
pp. 798-805
Author(s):  
N.A.T. Ariffin ◽  
◽  
M.A. Mustapha ◽  
T.M. Taher ◽  
N.F. Khodri ◽  
...  

Aim: To predict the distribution of suitable habitats for Malayan gaur (Bos gaurus) at a highly fragmented forest area in Peninsular Malaysia and to identify the potential connectivity between suitable habitat patches. Methodology: Maximum entropy (MaxEnt) approach was used to predict the distribution of suitable habitats of the Malayan gaur. Gaur presence-only data and six environmental variables were collated for the habitat suitability modeling, and area under curve (AUC) value was used to estimate the performance of the model. The resulting model was then used to derive a potential connectivity map through least-cost analysis using Corridor Designer toolbox in ArcGIS 10.4. Results: The AUC value of the habitat suitability model was 0.84. Distance from urban areas indicated the highest relative contribution to the model (26.9%), followed by distance from water body (24.2%) land use (18.0%) elevation (14.3%), slope (14.0%) and lithology (2.6%). Predicted suitable habitats for gaur were found mostly in lowland forest areas, especially in the vicinity of rivers within forest reserves. A total of five wildland blocks were derived from the habitat suitability model, and several potential corridor swaths were identified connecting the wildland blocks. Interpretation: The absence of gaur occurrence in suitable habitats suggest that fragmented habitats greatly affected gaur distribution and population. Road network and agricultural lands are the major barriers of gaur movement as they are very sensitive towards disturbances and conflict. Thus, this research proposes potential connectivity at a regional scale for Malayan gaur for use in future planning in conservation, management and development.


Author(s):  
Andri Wibowo

The migration routes have facilitated the distribution of mammals from south east Asian mainland to the Sundaland including Java island in the early Pleistocene. One of species that has migrated through that route is antelope-like bovid Duboisia santeng. In the present study, the potential distribution areas and the suitable habitats of D. santeng have been projected and modeled. The modeled habitat was a forest river basin sizing 302.91 Ha in the central of Java island. The model has classified and reconstructed the habitat suitability ranged from low to high back to Pleistocene. The surrounding areas of forest were mostly classified as medium and low related to the limited tree covers. Most suitable habitats were identified in the middle of forest river basin where the tree covers were presented


Author(s):  
Matthew C. Fitzpatrick ◽  
Aaron M. Ellison

Climatic change likely will exacerbate current threats to carnivorous plants. However, estimating the severity of climatic change is challenged by the unique ecology of carnivorous plants, including habitat specialization, dispersal limitation, small ranges, and small population sizes. We discuss and apply methods for modeling species distributions to overcome these challenges and quantify the vulnerability of carnivorous plants to rapid climatic change. Results suggest that climatic change will reduce habitat suitability for most carnivorous plants. Models also project increases in habitat suitability for many species, but the extent to which these increases may offset habitat losses will depend on whether individuals can disperse to and establish in newly suitable habitats outside of their current distribution. Reducing existing stressors and protecting habitats where numerous carnivorous plant species occur may ameliorate impacts of climatic change on this unique group of plants.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1604
Author(s):  
Sun Hee Hong ◽  
Yong Ho Lee ◽  
Gaeun Lee ◽  
Do-Hun Lee ◽  
Pradeep Adhikari

Predicting the distribution of invasive weeds under climate change is important for the early identification of areas that are susceptible to invasion and for the adoption of the best preventive measures. Here, we predicted the habitat suitability of 16 invasive weeds in response to climate change and land cover changes in South Korea using a maximum entropy modeling approach. Based on the predictions of the model, climate change is likely to increase habitat suitability. Currently, the area of moderately suitable and highly suitable habitats is estimated to be 8877.46 km2, and 990.29 km2, respectively, and these areas are expected to increase up to 496.52% by 2050 and 1439.65% by 2070 under the representative concentration pathways 4.5 scenario across the country. Although habitat suitability was estimated to be highest in the southern regions (<36° latitude), the central and northern regions are also predicted to have substantial increases in suitable habitat areas. Our study revealed that climate change would exacerbate the threat of northward weed invasions by shifting the climatic barriers of invasive weeds from the southern region. Thus, it is essential to initiate control and management strategies in the southern region to prevent further invasions into new areas.


Author(s):  
L. A. Novikova ◽  
◽  
S. N. Artemova ◽  
V. K. Makuev ◽  
E. Y. Yakovlev ◽  
...  

The research is devoted to the study of poorly preserved psammophytic variants of meadow steppes in the forest-steppe zone of the Middle Volga Region. It has allowed to define the main stages of re-establishment of vegetational cover and estimate the conservation prospects on the river Ardym in different ecological conditions (geomorphological and edaphyc). It has been established that the re-establishment of psammophytic steppes vegetation occurs in a similar way both on the slopes of the predominantly southern exposition and on watershed surfaces. However, in the absence of anthropogenic effects on watershed surfaces, there is a sylvatization of the vegetation cover resulting in displacement of psammophytic steppes. Only the constantly occurring weak natural erosion processes on the slopes of the predominantly southern exposition contribute to the preservation of these rare communities here. Under intense anthropogenic influence, as well as in the conditions of a significant erosion process, the psammophytic steppes fail to be preserved or replaced by steppe meadows.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0256633
Author(s):  
Catherine S. Jarnevich ◽  
Pairsa N. Belamaric ◽  
Kent Fricke ◽  
Mike Houts ◽  
Liza Rossi ◽  
...  

Habitat loss from land-use change is one of the top causes of declines in wildlife species of concern. As such, it is critical to assess and reassess habitat suitability as land cover and anthropogenic features change for both monitoring and developing current information to inform management decisions. However, there are obstacles that must be overcome to develop consistent assessments through time. A range-wide lek habitat suitability model for the lesser prairie-chicken (Tympanuchus pallidicinctus), currently under review by the U. S. Fish and Wildlife Service for potential listing under the Endangered Species Act, was published in 2016. This model was based on lek data from 2002 to 2012, land cover data ranging from 2001 to 2013, and anthropogenic features from circa 2011, and has been used to help guide lesser prairie-chicken management and anthropogenic development actions. We created a second iteration model based on new lek surveys (2015 to 2019) and updated predictors (2016 land cover and cleaned/updated anthropogenic data) to evaluate changes in lek suitability and to quantify current range-wide habitat suitability. Only three of 11 predictor variables were directly comparable between the iterations, making it difficult to directly assess what predicted changes resulted from changes in model inputs versus actual landscape change. The second iteration model showed a similar positive relationship with land cover and negative relationship with anthropogenic features to the first iteration, but exhibited more variation among candidate models. Range-wide, more suitable habitat was predicted in the second iteration. The Shinnery Oak Ecoregion, however, exhibited a loss in predicted suitable habitat that could be due to predictor source changes. Iterated models such as this are important to ensure current information is being used in conservation and development decisions.


2021 ◽  
Vol 8 ◽  
Author(s):  
Mary C. Fabrizio ◽  
Troy D. Tuckey ◽  
Aaron J. Bever ◽  
Michael L. MacWilliams

The sustained production of sufficient forage is critical to advancing ecosystem-based management, yet factors that affect local abundances and habitat conditions necessary to support aggregate forage production remain largely unexplored. We quantified suitable habitat in the Chesapeake Bay and its tidal tributaries for four key forage fishes: juvenile spotted hake Urophycis regia, juvenile spot Leiostomus xanthurus, juvenile weakfish Cynoscion regalis, and bay anchovy Anchoa mitchilli. We used information from monthly fisheries surveys from 2000 to 2016 coupled with hindcasts from a spatially interpolated model of dissolved oxygen and a 3-D hydrodynamic model of the Chesapeake Bay to identify influential covariates and construct habitat suitability models for each species. Suitable habitat conditions resulted from a complex interplay between water quality and geophysical properties of the environment and varied among species. Habitat suitability indices ranging between 0 (poor) and 1 (superior) were used to estimate seasonal and annual extents of suitable habitats. Seasonal variations in suitable habitat extents in Chesapeake Bay, which were more pronounced than annual variations during 2000–2016, reflected the phenology of estuarine use by these species. Areas near shorelines served as suitable habitats in spring for juvenile spot and in summer for juvenile weakfish, indicating the importance of these shallow areas for production. Tributaries were more suitable for bay anchovy in spring than during other seasons. The relative baywide abundances of juvenile spot and bay anchovy were significantly related to the extent of suitable habitats in summer and winter, respectively, indicating that Chesapeake Bay habitats may be limiting for these species. In contrast, the relative baywide abundances of juvenile weakfish and juvenile spotted hake varied independently of the spatial extent of suitable habitats. In an ecosystem-based approach, areas that persistently provide suitable conditions for forage species such as shoreline and tributary habitats may be targeted for protection or restoration, thereby promoting sufficient production of forage for predators. Further, quantitative habitat targets or spatial thresholds may be developed for habitat-limited species using estimates of the minimum habitat area required to produce a desired abundance or biomass; such targets or thresholds may serve as spatial reference points for management.


Sign in / Sign up

Export Citation Format

Share Document