scholarly journals Kinetic Characterization of β-xylosidase (GbtXyl43A) from Wild-type Geobacillus thermoleovorans IT-08 and The Variant GbtXyl43A-D121N

Author(s):  
Ika Fitriani Juli Palupi ◽  
Kartika Dwi Asni Putri ◽  
Ni Nyoman Purwani ◽  
Sri Sumarsih ◽  
Ni Nyoman Tri Puspaningsih

GbtXyl43A, a β-xylosidase that is isolated from Geobacillus thermoleovorans IT-08 and grouped in GH43 family. The substitution of 121Asp residue with Asn in GbtXyl43A caused decrease the enzyme activity. The aim of this study, determine the kinetic characteristics of wild-type GbtXyl43A and D121N variant using Vmax, KM, kcat, and kcat/KM. These parameters indicated catalytic mechanism of GbtXyl43A and its derivative. All of them were produced in Escherichia coli BL21 star. The purification of wild-type GbtXyl43A using affinity chromatography, but D121N variant also required anion-exchange chromatography. The specific activity of wild-type GbtXyl43A and D121N variant were 0.471 U mg-1 in purity level 55,44 and 0.012 U mg-1 in purity level 2,407, respectively. Both enzymes had same molecular weight, ~58 kDa. The kinetic parameters of wild-type GbtXyl43A were KM: 2.845 mM, kcat: 0.033 s-1, Vmax: 0.0033 mM min-1and kcat/KM: 0.0115 s-1mM-1. Furthermore, the KM, kcat, Vmax, and kcat/KM values of D121N variant were 4.565 mM, 1.01 × 10-4 mM min-1, 0.140 × 10-4 s-1, and 0.0307 s-1mM-1, respectively. The KM value of the D121N variant was higher than its wild type and showed the affinity of D121N variant was lower than GbtXyl43A

1986 ◽  
Vol 237 (2) ◽  
pp. 415-420 ◽  
Author(s):  
C R Goward ◽  
R Hartwell ◽  
T Atkinson ◽  
M D Scawen

Homogeneous glucokinase (EC 2.7.1.2) from the thermophile Bacillus stearothermophilus was isolated on the large scale by using four major steps: precipitation of extraneous material at pH 5.5, ion-exchange chromatography on DEAE-Sepharose, pseudo-affinity chromatography on Procion Brown H-3R-Sepharose 4B and gel filtration on Ultrogel AcA 34. The purified enzyme had a specific activity of about 330 units/mg of protein and was shown to exist as a dimer of subunit Mr 33,000. Kinetic parameters for the enzyme were determined with a variety of substrates. The glucokinase was highly specific for alpha-D-glucose, and the only other sugar substrate utilized was N-acetyl-alpha-D-glucosamine. The enzyme shows Michaelis-Menten kinetics, with a Km value of 150 microM for alpha-D-glucose. The glucokinase was maximally active at pH 9.0.


1996 ◽  
Vol 316 (1) ◽  
pp. 131-136 ◽  
Author(s):  
Per JEMTH ◽  
Gun STENBERG ◽  
Grigoriy CHAGA ◽  
Bengt MANNERVIK

Rat glutathione transferase (GST) T2-2 of class Theta (rGST T2-2), previously known as GST 12-12 and GST Yrs-Yrs, has been heterologously expressed in Escherichia coli XL1-Blue. The corresponding cDNA was isolated from a rat hepatoma cDNA library, ligated into and expressed from the plasmid pKK-D. The sequence is the same as that of the previously reported cDNA of GST Yrs-Yrs. The enzyme was purified using ion-exchange chromatography followed by affinity chromatography with immobilized ferric ions, and the yield was approx. 200 mg from a 1 litre bacterial culture. The availability of a stable recombinant rGST T2-2 has paved the way for a more accurate characterization of the enzyme. The functional properties of the recombinant rGST T2-2 differ significantly from those reported earlier for the enzyme isolated from rat tissues. These differences probably reflect the difficulties in obtaining fully active enzyme from sources where it occurs in relatively low concentrations, which has been the case in previous studies. 1-Chloro-2,4-dinitrobenzene, a substrate often used with GSTs of classes Alpha, Mu and Pi, is a substrate also for rGST T2-2, but the specific activity is relatively low. The Km value for glutathione was determined with four different electrophiles and was found to be in the range 0.3 mM–0.8 mM. The Km values for some electrophilic substrates were found to be in the micromolar range, which is low compared with those determined for GSTs of other classes. The highest catalytic efficiency was obtained with menaphthyl sulphate, which gave a kcat/Km value of 2.3×106 s-1·M-1 and a rate enhancement over the uncatalysed reaction of 3×1010.


2017 ◽  
Vol 37 (1) ◽  
pp. 31
Author(s):  
Fitria Fitria ◽  
Nanik Rahmani ◽  
Sri Pujiyanto ◽  
Budi Raharjo ◽  
Yopi Yopi

Enzyme xylanase (EC 3.2.1.8) is widely used in various industrial  fields for the hydrolysis of xylan (hemicellulose) into xylooligosaccharide and xylose. The aims of this study were to  conduct partial purification and characterization of xylanase from marine Bacillus safencis strain LBF P20 and to obtain the  xylooligosaccharide types from xylan hydrolysis by this enzyme.  Based on this research, the optimum time for enzyme production  occurred at 96 hours with the enzyme activity of 6.275 U/mL and  enzyme specific activity of 5.093 U/mg. The specific activities were  obtained from precipitation by amicon® ultra-15 centrifugal filter devices, gel filtration chromatography and anion exchange chromatography that were increased by 15.07, 34.7, and 96.0  U/mg. The results showed that the highest activity at pH 7, temperature of 60 °C, and stable at 4 °C. Type of  xylooligosaccharide produced by this study were xylohexoses, xylotriose, and xylobiose. SDS-PAGE analysis and zimogram  showed that the molecular weight of xylanase protein were about  25 kDa. ABSTRAKEnzim xilanase (EC 3.2.1.8) digunakan dalam hidrolisis xilan  (hemiselulosa) menjadi xilooligosakarida dan xilosa. Penelitian  ini bertujuan untuk melakukan purifikasi parsial dan karakterisasi xilanase dari bakteri laut Bacillus safencis strain LBF P20 serta uji  hidrolisis untuk mengetahui jenis xilooligosakarida yang  dihasilkan oleh enzim tersebut. Berdasarkan hasil penelitian, waktu optimum untuk produksi enzim terjadi pada jam ke 96  dengan aktivitas enzim sebesar 6,275 U/mL dan aktivitas spesifik enzim sebesar 5,093 (U/mg). Aktivitas spesifik enzim hasil  pemekatan dengan amicon® ultra-15 centrifugal filter devices,  kromatografi filtrasi gel dan kromatografi penukar anion  mengalami peningkatan berturut-turut sebesar 15,1; 34,7 dan96,0 U/mg. Hasil karakterisasi menunjukkan aktivitas  tertinggi pada pH 7, suhu 60 °C dan stabil pada suhu 4 °C. Analisis SDS-PAGE dan zimogram menunjukkan berat molekul protein xilanase berkisar 25 kDa. Jenis gula reduksi yang  dihasilkan yaitu xiloheksosa, xilotriosa, dan xilobiosa.


1985 ◽  
Vol 228 (3) ◽  
pp. 653-660 ◽  
Author(s):  
J F Lenney ◽  
S C Peppers ◽  
C M Kucera-Orallo ◽  
R P George

Human tissue carnosinase (EC 3.4.13.3) had optimum activity at pH9.5 and was a cysteine peptidase, being activated by dithiothreitol and inhibited by p-hydroxymercuribenzoate. By optimizing assay conditions, the activity per g of tissue was increased 10-fold compared with values in the literature. The enzyme was present in every human tissue assayed and was entirely different from serum carnosinase. Highly purified tissue carnosinase had a broader specificity than hog kidney carnosinase. Although tissue carnosinase was very strongly inhibited by bestatin, it did not hydrolyse tripeptides, and thus appears to be a dipeptidase rather than an aminopeptidase. It had a relative molecular mass of 90 000, an isoelectric point of 5.6, and a Km value of 10 mM-carnosine. Two forms of kidney and brain carnosinase were separated by high-resolution anion-exchange chromatography, although only one form was detected by various electrophoretic methods. Homocarnosinase and Mn2+-independent carnosinase were not detected in human tissues, although these enzymes are present in rat and hog kidney.


2006 ◽  
Vol 52 (6) ◽  
pp. 519-524 ◽  
Author(s):  
H N Bhatti ◽  
M Madeeha ◽  
M Asgher ◽  
N Batool

An intracellular glucose oxidase (GOD) was isolated from the mycelium extract of a locally isolated strain of Aspergillus niger NFCCP. The enzyme was partially purified to a yield of 28.43% and specific activity of 135 U mg–1 through ammonium sulfate precipitation, anion-exchange chromatography, and gel filtration. The enzyme showed high specificity for D-glucose, with a Km value of 25 mmol L–1. The enzyme exhibited optimum catalytic activity at pH 5.5. Optimum temperature for GOD-catalyzed D-glucose oxidation was 40 °C. The enzyme displayed a high thermostability having a half-life (t1/2) of 30 min, enthalpy of denaturation (H*) of 99.66 kJ mol–1, and free energy of denaturation (G*) of 103.63 kJ mol–1. These characteristics suggest that GOD from A. niger NFCCP can be used as an analytical reagent and in the design of biosensors for clinical, biochemical, and diagnostic assays.Key words: glucose oxidase, Aspergillus niger, kinetics, thermodynamics, thermal stability.


2021 ◽  
Vol 11 (7) ◽  
pp. 3212
Author(s):  
Noa Miguez ◽  
Peter Kidibule ◽  
Paloma Santos-Moriano ◽  
Antonio O. Ballesteros ◽  
Maria Fernandez-Lobato ◽  
...  

Chitooligosaccharides (COS) are homo- or hetero-oligomers of D-glucosamine (GlcN) and N-acetyl-D-glucosamine (GlcNAc) that can be obtained by chitosan or chitin hydrolysis. Their enzymatic production is preferred over other methodologies (physical, chemical, etc.) due to the mild conditions required, the fewer amounts of waste and its efficiency to control product composition. By properly selecting the enzyme (chitinase, chitosanase or nonspecific enzymes) and the substrate properties (degree of deacetylation, molecular weight, etc.), it is possible to direct the synthesis towards any of the three COS types: fully acetylated (faCOS), partially acetylated (paCOS) and fully deacetylated (fdCOS). In this article, we review the main strategies to steer the COS production towards a specific group. The chemical characterization of COS by advanced techniques, e.g., high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) and MALDI-TOF mass spectrometry, is critical for structure–function studies. The scaling of processes to synthesize specific COS mixtures is difficult due to the low solubility of chitin/chitosan, the heterogeneity of the reaction mixtures, and high amounts of salts. Enzyme immobilization can help to minimize such hurdles. The main bioactive properties of COS are herein reviewed. Finally, the anti-inflammatory activity of three COS mixtures was assayed in murine macrophages after stimulation with lipopolysaccharides.


1990 ◽  
Vol 68 (7-8) ◽  
pp. 1037-1044 ◽  
Author(s):  
Peter C. Loewen ◽  
Jacek Switala ◽  
Mark Smolenski ◽  
Barbara L. Triggs-Raine

Hydroperoxidase I (HPI) of Escherichia coli is a bifunctional enzyme exhibiting both catalase and peroxidase activities. Mutants lacking appreciable HPI have been generated using nitrosoguanidine and the gene encoding HPI, katG, has been cloned from three of these mutants using either classical probing methods or polymerase chain reaction amplification. The mutant genes were sequenced and the changes from wild-type sequence identified. Two mutants contained G to A changes in the coding strand, resulting in glycine to aspartate changes at residues 119 (katG15) and 314 (katG16) in the deduced amino acid sequence of the protein. A third mutant contained a C to T change resulting in a leucine to phenylalanine change at residue 139 (katG14). The Phe139-, Asp119-, and Asp314-containing mutants exhibited 13, < 1, and 18%, respectively, of the wild-type catalase specific activity and 43, 4, and 45% of the wild-type peroxidase specific activity. All mutant enzymes bound less protoheme IX than the wild-type enzyme. The sensitivities of the mutant enzymes to the inhibitors hydroxylamine, azide, and cyanide and the activators imidazole and Tris were similar to those of the wild-type enzyme. The mutant enzymes were more sensitive to high temperature and to β-mercaptoethanol than the wild-type enzyme. The pH profiles of the mutant catalases were unchanged from the wild-type enzyme.Key words: catalase, hydroperoxidase I, mutants, sequence analysis.


Author(s):  
Ismat Bibi ◽  
Haq Nawaz Bhatti

This study deals with purification and characterization of lignin peroxidase (LiP) isolated from Agaricus bitorqus A66 during decolorization of NOVASOL Direct Black dye. A laboratory scale experiment was conducted for maximum LiP production under optimal conditions. Purification & fractionation of LiP was performed on DEAE-Sepharose ion exchange chromatography followed by Sephadex G-50 gel filtration. The purified LiP has a specific activity of 519 U/mg with 6.73% activity recover. The optimum pH and temperature of purified LiP for the oxidation of veratryl alcohol were 6.8 and 45 °C, respectively. Michaelis-Menten kinetic constants (Vmax and Km) were determined using different concentrations of veratryl alcohol (1-35 mM). The Km and Vmax were 16.67 mM and 179.2 U/mL respectively, for veratryl alcohol oxidation as determined from the Lineweaver-Burk plot. Thermal inactivation studies were carried out at different temperatures to check the thermal stability of the enzyme. Enthalpy of activation decreased where Free energy of activation for thermal denaturation increased at higher temperatures. A possible explanation for the thermal inactivation of LiP at higher temperatures is also discussed.


2011 ◽  
Vol 63 (3) ◽  
pp. 747-756 ◽  
Author(s):  
A.K.M. Asaduzzaman ◽  
Habibur Rahman ◽  
Tanzima Yeasmin

An acid phosphatase has been isolated and purified from an extract of a germinating black gram seedling. The method was accomplished by gel filtration of a germinating black gram seedling crude extract on sephadex G-75 followed by ion exchange chromatography on DEAE cellulose. The acid phosphatase gave a single band on SDS-polyacrylamide slab gel electrophoresis. The molecular weight of the acid phosphatase determined by SDS-polyacrylamide slab gel electrophoresis was estimated to be 25 kDa. The purified enzyme showed maximum activity at pH 5 and at temperature of 55?C. Mg2+, Zn2+ and EDTA had an inhibitory effect on the activity of the acid phosphatase. Black gram seedling acid phosphatase was activated by K+, Cu2+ and Ba2+. The Km value of the enzyme was found to be 0.49 mM for pNPP as substrate.


2017 ◽  
Vol 18 (2) ◽  
pp. 1-10 ◽  
Author(s):  
Dzun Noraini Jimat ◽  
Intan Baizura Firda Mohamed ◽  
Azlin Suhaida Azmi ◽  
Parveen Jamal

A newly bacterial producing L-asparaginase was successful isolated from Sungai Klah Hot Spring, Perak, Malaysia and identified as Bacillus sp. It was the best L-asparaginase producer as compared to other isolates. Production of L-asparaginase from the microbial strain was carried out under liquid fermentation. The crude enzyme was then centrifuged and precipitated with ammonium sulfate before further purified with chromatographic method. The ion exchange chromatography HiTrap DEAE-Sepharose Fast Flow column followed by separation on Superose 12 gel filtration were used to obtain pure enzyme. The purified enzyme showed 10.11 U/mg of specific activity, 50.07% yield with 2.21 fold purification. The purified enzyme was found to be dimer in form, with a molecular weight of 65 kDa as estimated by SDS-PAGE. The maximum activity of the purified L-asparaginase was observed at pH 9 and temperature of 60°C.


Sign in / Sign up

Export Citation Format

Share Document