scholarly journals Interfacial Crystallization within Liquid Marbles

Author(s):  
Edward Bormashenko ◽  
Pritam Kumar Roy ◽  
Shraga Shoval ◽  
Irina Legchenkova

We report interfacial crystallization in droplets of saline solutions placed on superhydrophobic surfaces and liquid marbles filled with the saline. Evaporation of saline droplets deposited on superhydrophobic surface resulted in the formation of cup-shaped millimeter-scaled residues. The formation of the cup-like deposit is reasonably explained within the framework of the theory of the coffee-stain effect, namely, the rate of heterogeneous crystallization along the contact line of the droplet is many times higher than in the droplet bulk. Crystallization within evaporated saline marbles, coated with lycopodium particles, depends strongly on the evaporation rate. Rapidly evaporated saline marbles yielded dented shells built of a mixture of colloidal particles and NaCl crystals. We relate the formation of these shells to the interfacial crystallization promoted by hydrophobic particles coating the marbles, accompanied with the upward convection flows supplying the saline to the particles, serving as the centers of interfacial crystallization. Convective flows prevail over the diffusion mass transport for the saline marbles heated from below.

2020 ◽  
Vol 5 (4) ◽  
pp. 62
Author(s):  
Edward Bormashenko ◽  
Pritam Kumar Roy ◽  
Shraga Shoval ◽  
Irina Legchenkova

We report interfacial crystallization in the droplets of saline solutions placed on superhydrophobic surfaces and liquid marbles filled with the saline. Evaporation of saline droplets deposited on superhydrophobic surface resulted in the formation of cup-shaped millimeter-scaled residues. The formation of the cup-like deposit is reasonably explained within the framework of the theory of the coffee-stain effect, namely, the rate of heterogeneous crystallization along the contact line of the droplet is significantly higher than in the droplet bulk. Crystallization within evaporated saline marbles coated with lycopodium particles depends strongly on the evaporation rate. Rapidly evaporated saline marbles yielded dented shells built of a mixture of colloidal particles and NaCl crystals. We relate the formation of these shells to the interfacial crystallization promoted by hydrophobic particles coating the marbles, accompanied with the upward convection flows supplying the saline to the particles, serving as the centers of interfacial crystallization. Convective flows prevail over the diffusion mass transport for the saline marbles heated from below.


Soft Matter ◽  
2021 ◽  
Author(s):  
Jianchen Zhu ◽  
Tian ren Zhang ◽  
Yajie Liu ◽  
Daoyi Lu ◽  
Peng Zhang ◽  
...  

A kind of low-molecular weight organic gelator (LMOG) bearing hydrazine linkage and end-capped by alkoxy-substituted phenyl, namely 1, 4-bis[(3, 4-bisoctyloxyphenyl)hydrozide]phenylene (BPH-8), was used to facilely fabricate superhydrophobic surfaces by drop-casting...


Soft Matter ◽  
2021 ◽  
Author(s):  
Yuxing Shan ◽  
shuai liang ◽  
Xiangkai Mao ◽  
Jie Lu ◽  
Lili Liu ◽  
...  

Abstract. Stretchable elastomers with superhydrophobic surfaces have potential applications in wearable electronics. However, various types of damage inevitably occur on these elastomers in actual application, resulting in deterioration of the...


RSC Advances ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 297-308
Author(s):  
Zhi Chen ◽  
Yongbo Hu ◽  
Xu He ◽  
Yihao Xu ◽  
Xuesong Liu ◽  
...  

We investigated a one-step method for calcium superhydrophobic surface preparation and researched the formation process of loose, flower-like microstructures. Also, we found that the pressing force strongly impacts the dynamics of water droplets.


Coatings ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 472 ◽  
Author(s):  
Doeun Kim ◽  
Arun Sasidharanpillai ◽  
Ki Hoon Yun ◽  
Younki Lee ◽  
Dong-Jin Yun ◽  
...  

Robust superhydrophobic surfaces are fabricated on different substrates by a scalable spray coating process. The developed superhydrophobic surface consists of thin layers of surface functionalized silica nanoparticle (SiO2) bound to the substrate by acrylate-polyurethane (PU) binder. The influence of the SiO2/PU ratio on the superhydrophobicity, and the robustness of the developed surface, is systematically analyzed. The optimized SiO2/PU ratio for prepared superhydrophobic surfaces is obtained between 0.9 and 1.2. The mechanism which yields superhydrophobicity to the surface is deduced for the first time with the help of scanning electron microscopy and profilometer. The effect of mechanical abrasion on the surface roughness and superhydrophobicity are analyzed by using profilometer and contact angle measurement, respectively. Finally, it is concluded that the binder plays a key role in controlling the surface roughness and superhydrophobicity through the capillary mechanism. Additionally, the reason for the reduction in performance is also discussed with respect to the morphology variation.


RSC Advances ◽  
2018 ◽  
Vol 8 (64) ◽  
pp. 36697-36704 ◽  
Author(s):  
Takashi Yanagishita ◽  
Kaito Murakoshi ◽  
Toshiaki Kondo ◽  
Hideki Masuda

Superhydrophobic surface with hierarchical structures prepared by nanoimprinting using anodic porous alumina molds.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Huan Yang ◽  
Kaichen Xu ◽  
Changwen Xu ◽  
Dianyuan Fan ◽  
Yu Cao ◽  
...  

Abstract Highly stretchable and robust superhydrophobic surfaces have attracted tremendous interest due to their broad application prospects. In this work, silicone elastomers were chosen to fabricate superhydrophobic surfaces with femtosecond laser texturing method, and high stretchability and tunable adhesion of the superhydrophobic surfaces were demonstrated successfully. To our best knowledge, it is the first time flexible superhydrophobic surfaces with a bearable strain up to 400% are fabricated by simple laser ablation. The test also shows that the strain brings no decline of water repellency but an enhancement to the superhydrophobic surfaces. In addition, a stretching-induced transition from “petal” state to “lotus” state of the laser-textured surface was also demonstrated by non-loss transportation of liquid droplets. Our results manifest that femtosecond laser ablating silicone elastomer could be a promising way for fabricating superhydrophobic surface with distinct merits of high stretchability, tunable adhesion, robustness, and non-fluorination, which is potentially useful for microfluidics, biomedicine, and liquid repellent skin.


2015 ◽  
Vol 3 (6) ◽  
pp. 2844-2852 ◽  
Author(s):  
Lianbin Zhang ◽  
Jinbo Wu ◽  
Mohamed Nejib Hedhili ◽  
Xiulin Yang ◽  
Peng Wang

Direct micropatterning of superhydrophilicity on superhydrophobic surfaces was achieved by inkjet printing a mussel-inspired ink of dopamine solution onto the superhydrophobic surface, followed by the formation of polydopamine. The micropatterned superhydrophobic surfaces exhibited an enhanced fog-harvesting efficiency.


RSC Advances ◽  
2014 ◽  
Vol 4 (104) ◽  
pp. 59750-59753 ◽  
Author(s):  
Jie Li ◽  
Naixin Wang ◽  
Hao Yan ◽  
Shulan Ji ◽  
Guojun Zhang

Inspired by the superhydrophobic surface of lotus leafs, ZIF-8/PDMS membranes with micro- and nanoscaled structures were modified by SAMs. The as-prepared hierarchical hybrid membranes exhibited excellent performance for bioalcohol pervaporation.


Sign in / Sign up

Export Citation Format

Share Document