scholarly journals Evaluation of the Global Climate Models in CMIP6 over Uganda

Author(s):  
Hamida Ngoma ◽  
Wang Wen ◽  
Brian Ayugi ◽  
Hassen Babaousmail ◽  
Riwzan Karim ◽  
...  

This study employed 15 CMIP6 GCMs and evaluated their ability to simulate rainfall over Uganda during 1981-2019. The models and the ensemble mean were assessed based on the ability to reproduce the annual climatologyseasonal rainfall distribution, trend, and statistical metrics, including mean bias error, root mean square error, and pattern correlation coefficient. The Taylor diagram and Taylor skill score (TSS) were used in ranking the models. The models performance varies greatly from one season to the other. The models reproduced the observed bimodal rainfall pattern of March to May (MAM) and September to November (SON) rains occurring over the region. Some models slightly overestimated, while some slightly underestimated, the MAM rainfall. However, there was a high rainfall overestimation during SON by most models. The models showed a positive spatial correlation with observed dataset, whereas a low correlation was shown interannually. Some models could not capture the rainfall patterns around local-scale features, for example, around the Lake Victoria basin and mountainous areas. The best performing models identified in the study include GFDL-ESM4, BCC-CMC-MR, IPSL-CM6A-LR, CanESM5, GDFL-CM4-gr1, and GFDL-CM4-gr2. The models CNRM-CM6-1 and CNRM-ESM2 underestimated rainfall throughout the annual cycle and mean climatology. However, these two models better reproduced the spatial trends of rainfall during both MAM and SON. The model spread in CMIP6 over the study area calls for further investigation on the attributions and possible implementation of robust approaches of Machine learning to minimize the biases.

2016 ◽  
Vol 29 (17) ◽  
pp. 6065-6083 ◽  
Author(s):  
Yinghui Liu ◽  
Jeffrey R. Key

Abstract Cloud cover is one of the largest uncertainties in model predictions of the future Arctic climate. Previous studies have shown that cloud amounts in global climate models and atmospheric reanalyses vary widely and may have large biases. However, many climate studies are based on anomalies rather than absolute values, for which biases are less important. This study examines the performance of five atmospheric reanalysis products—ERA-Interim, MERRA, MERRA-2, NCEP R1, and NCEP R2—in depicting monthly mean Arctic cloud amount anomalies against Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations from 2000 to 2014 and against Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) observations from 2006 to 2014. All five reanalysis products exhibit biases in the mean cloud amount, especially in winter. The Gerrity skill score (GSS) and correlation analysis are used to quantify their performance in terms of interannual variations. Results show that ERA-Interim, MERRA, MERRA-2, and NCEP R2 perform similarly, with annual mean GSSs of 0.36/0.22, 0.31/0.24, 0.32/0.23, and 0.32/0.23 and annual mean correlation coefficients of 0.50/0.51, 0.43/0.54, 0.44/0.53, and 0.50/0.52 against MODIS/CALIPSO, indicating that the reanalysis datasets do exhibit some capability for depicting the monthly mean cloud amount anomalies. There are no significant differences in the overall performance of reanalysis products. They all perform best in July, August, and September and worst in November, December, and January. All reanalysis datasets have better performance over land than over ocean. This study identifies the magnitudes of errors in Arctic mean cloud amounts and anomalies and provides a useful tool for evaluating future improvements in the cloud schemes of reanalysis products.


2021 ◽  
Author(s):  
Mohamed Sanusi Shiru ◽  
Eun-Sung Chung

Abstract This study assessed the performances of 13 GCMs of the CMIP6 in replicating precipitation and maximum and minimum temperatures over Nigeria during 1984–2014 in order to identify the best GCMs for multi model ensemble aggregation for climate projection. The study uses the monthly full reanalysis precipitation product Version 6 of Global Precipitation Climatology Centre and the maximum and minimum temperature CRU version TS v. 3.23 products of Climatic Research Unit as reference data. The study applied five statistical indices namely, normalized root mean square error, percentage of bias, Nash-Sutcliffe efficiency, and coefficient of determination; and volumetric efficiency. Compromise programming (CP) was then used in the aggregation of the scores of the different GCMs for the variables. Spatial assessment, probability distribution function, Taylor diagram, and mean monthly assessments were used in confirming the findings from the CP. The study revealed that CP was able to uniformly evaluate the GCMs even though there were some contradictory results in the statistical indicators. Spatial assessment of the GCMs in relation to the observed showed the highest ranked GCMs by the CP were able to better reproduce the observed properties. The least ranking GCMs were observed to have both spatially overestimated or underestimated precipitation and temperature over the study area. In combination with the other measures, the GCMs were ranked using the final scores from the CP. IPSL-CM6A-LR, NESM3, CMCC-CM2-SR5, and ACCESS-ESM1-5 were the highest ranking GCMs for precipitation. For maximum temperature, INM.CM4-8, BCC-CSM2-MR, MRI-ESM2-0, and ACCESS-ESM1-5 ranked the highest while AWI-CM-1-1-MR, IPSL-CM6A-LR, INM.CM5-0, and CanESM5 ranked the highest for minimum temperature.


2021 ◽  
Author(s):  
Mohammad Kamruzzaman ◽  
Shamsuddin Shahid ◽  
ARM Towfiqul Islam ◽  
Syewoon Hwang ◽  
Jaepil Cho ◽  
...  

Abstract The relative performance of global climate models (GCMs) of phases 5 and 6 of the Coupled Model Intercomparison Project (CMIP5 and CMIP6, respectively) was assessed in this study based on their ability to simulate annual and seasonal mean rainfall and temperature over Bangladesh for the period 1977–2005. The multiple statistical metrics were used to measure the performance of the GCMs at 30 meteorological observation stations. Two robust multi-criteria decision analysis methods were used to integrate the results obtained using different metrics for an unbiased ranking of the GCMs. The results revealed MIROC5 as the most skilful among CMIP5 GCMs and ACCESS-CM2 among CMIP6 GCMs. Overall, a significant improvement in CMIP6 MME compared to CMIP5 MME was noticed in simulating rainfall over Bangladesh at annual and seasonal scales. CMIP6 MME also showed significant reduction in maximum and minimum temperature biases over Bangladesh. However, systematic wet and cold biases still exist in CMIP6 models for Bangladesh. CMIP6 GCMs showed higher spatial correlation with observed data compared to CMIP5 GCMs, but higher difference in terms of standard deviations and centered root mean square errors, indicating better performance in simulating geographical distribution but lower performance in simulating spatial variability of most of the climate variables for different timescales. In terms of Taylor skill score, the CMIP6 MME showed higher performance in simulating rainfall but lower performance in simulating temperature compared to CMIP5 MME for most of the timeframes. The findings of this study suggest that the added value of rainfall and temperature simulations in CMIP6 models is incompatible with the climate models used in this research.


2014 ◽  
Vol 6 (2) ◽  
pp. 288-299 ◽  
Author(s):  
K. Srinivasa Raju ◽  
D. Nagesh Kumar

Eleven general circulation models/global climate models (GCMs) – BCCR-BCCM2.0, INGV-ECHAM4, GFDL2.0, GFDL2.1, GISS, IPSL-CM4, MIROC3, MRI-CGCM2, NCAR-PCMI, UKMO-HADCM3 and UKMO-HADGEM1 – are evaluated for Indian climate conditions using the performance indicator, skill score (SS). Two climate variables, temperature T (at three levels, i.e. 500, 700, 850 mb) and precipitation rate (Pr) are considered resulting in four SS-based evaluation criteria (T500, T700, T850, Pr). The multicriterion decision-making method, technique for order preference by similarity to an ideal solution, is applied to rank 11 GCMs. Efforts are made to rank GCMs for the Upper Malaprabha catchment and two river basins, namely, Krishna and Mahanadi (covered by 17 and 15 grids of size 2.5° × 2.5°, respectively). Similar efforts are also made for India (covered by 73 grid points of size 2.5° × 2.5°) for which an ensemble of GFDL2.0, INGV-ECHAM4, UKMO-HADCM3, MIROC3, BCCR-BCCM2.0 and GFDL2.1 is found to be suitable. It is concluded that the proposed methodology can be applied to similar situations with ease.


2011 ◽  
Author(s):  
Enrico Scoccimarro ◽  
Silvio Gualdi ◽  
Antonella Sanna ◽  
Edoardo Bucchignani ◽  
Myriam Montesarchio

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mateusz Taszarek ◽  
John T. Allen ◽  
Mattia Marchio ◽  
Harold E. Brooks

AbstractGlobally, thunderstorms are responsible for a significant fraction of rainfall, and in the mid-latitudes often produce extreme weather, including large hail, tornadoes and damaging winds. Despite this importance, how the global frequency of thunderstorms and their accompanying hazards has changed over the past 4 decades remains unclear. Large-scale diagnostics applied to global climate models have suggested that the frequency of thunderstorms and their intensity is likely to increase in the future. Here, we show that according to ERA5 convective available potential energy (CAPE) and convective precipitation (CP) have decreased over the tropics and subtropics with simultaneous increases in 0–6 km wind shear (BS06). Conversely, rawinsonde observations paint a different picture across the mid-latitudes with increasing CAPE and significant decreases to BS06. Differing trends and disagreement between ERA5 and rawinsondes observed over some regions suggest that results should be interpreted with caution, especially for CAPE and CP across tropics where uncertainty is the highest and reliable long-term rawinsonde observations are missing.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lennart Quante ◽  
Sven N. Willner ◽  
Robin Middelanis ◽  
Anders Levermann

AbstractDue to climate change the frequency and character of precipitation are changing as the hydrological cycle intensifies. With regards to snowfall, global warming has two opposing influences; increasing humidity enables intense snowfall, whereas higher temperatures decrease the likelihood of snowfall. Here we show an intensification of extreme snowfall across large areas of the Northern Hemisphere under future warming. This is robust across an ensemble of global climate models when they are bias-corrected with observational data. While mean daily snowfall decreases, both the 99th and the 99.9th percentiles of daily snowfall increase in many regions in the next decades, especially for Northern America and Asia. Additionally, the average intensity of snowfall events exceeding these percentiles as experienced historically increases in many regions. This is likely to pose a challenge to municipalities in mid to high latitudes. Overall, extreme snowfall events are likely to become an increasingly important impact of climate change in the next decades, even if they will become rarer, but not necessarily less intense, in the second half of the century.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1819
Author(s):  
Eleni S. Bekri ◽  
Polychronis Economou ◽  
Panayotis C. Yannopoulos ◽  
Alexander C. Demetracopoulos

Freshwater resources are limited and seasonally and spatially unevenly distributed. Thus, in water resources management plans, storage reservoirs play a vital role in safeguarding drinking, irrigation, hydropower and livestock water supply. In the last decades, the dams’ negative effects, such as fragmentation of water flow and sediment transport, are considered in decision-making, for achieving an optimal balance between human needs and healthy riverine and coastal ecosystems. Currently, operation of existing reservoirs is challenged by increasing water demand, climate change effects and active storage reduction due to sediment deposition, jeopardizing their supply capacity. This paper proposes a methodological framework to reassess supply capacity and management resilience for an existing reservoir under these challenges. Future projections are derived by plausible climate scenarios and global climate models and by stochastic simulation of historic data. An alternative basic reservoir management scenario with a very low exceedance probability is derived. Excess water volumes are investigated under a probabilistic prism for enabling multiple-purpose water demands. Finally, this method is showcased to the Ladhon Reservoir (Greece). The probable total benefit from water allocated to the various water uses is estimated to assist decision makers in examining the tradeoffs between the probable additional benefit and risk of exceedance.


Sign in / Sign up

Export Citation Format

Share Document