scholarly journals Performance Evaluation of CMIP6 Global Climate Models for Selecting Models for Climate Projection over Nigeria

Author(s):  
Mohamed Sanusi Shiru ◽  
Eun-Sung Chung

Abstract This study assessed the performances of 13 GCMs of the CMIP6 in replicating precipitation and maximum and minimum temperatures over Nigeria during 1984–2014 in order to identify the best GCMs for multi model ensemble aggregation for climate projection. The study uses the monthly full reanalysis precipitation product Version 6 of Global Precipitation Climatology Centre and the maximum and minimum temperature CRU version TS v. 3.23 products of Climatic Research Unit as reference data. The study applied five statistical indices namely, normalized root mean square error, percentage of bias, Nash-Sutcliffe efficiency, and coefficient of determination; and volumetric efficiency. Compromise programming (CP) was then used in the aggregation of the scores of the different GCMs for the variables. Spatial assessment, probability distribution function, Taylor diagram, and mean monthly assessments were used in confirming the findings from the CP. The study revealed that CP was able to uniformly evaluate the GCMs even though there were some contradictory results in the statistical indicators. Spatial assessment of the GCMs in relation to the observed showed the highest ranked GCMs by the CP were able to better reproduce the observed properties. The least ranking GCMs were observed to have both spatially overestimated or underestimated precipitation and temperature over the study area. In combination with the other measures, the GCMs were ranked using the final scores from the CP. IPSL-CM6A-LR, NESM3, CMCC-CM2-SR5, and ACCESS-ESM1-5 were the highest ranking GCMs for precipitation. For maximum temperature, INM.CM4-8, BCC-CSM2-MR, MRI-ESM2-0, and ACCESS-ESM1-5 ranked the highest while AWI-CM-1-1-MR, IPSL-CM6A-LR, INM.CM5-0, and CanESM5 ranked the highest for minimum temperature.

2020 ◽  
Vol 8 (5) ◽  
pp. 3395-3404

In this study, the attempt is made to investigate the impact of future climate changes related to three weather parameter maximum temperature (Tmax), minimum temperature (Tmin) and precipitation for study area were projected for two future time slice (2017–2058), and (2059–2100) from the three Global Climate Models (GCMs), CanESM2, CGCM3 and HadCM3 under different representative concentration pathway (RCPs) scenarios (RCP2.5, RCP4.5, and RCP8.5) using statistical downscaling model (SDSM). The predictor variables are downloaded from National Center for Environmental Prediction/Atmospheric Research (NCEP/NCAR) and simulations from the three Global Climate Models (GCMs), Second Generation Canadian Earth System Model (CanESM2), Canadian Centre for Climate Modelling and Analysis (CGCM3) and Hadley Centre for Climate Prediction and Research/Met Office (HadCM3) variability and changes in Tmax, Tmin and precipitation under different (RCPs) scenarios have been presented for two future time slice. The performance for three models showed maximum/minimum temperature increases in future for almost all the (RCPs) scenarios. Also precipitation of the entire catchment was found to increasing trends for all scenarios. In case of HadCM3 model, under RCP8.5 scenarios for the period (2017-2058), changes in max temperature, min temperature, and precipitation are forecasted as 0.72 °C, 1.42 °C, and 2.82 mm and for the period (2059-2100) are 1.16 °C, 2.14 °C, and 6.85 mm.The results obtained from HadCM3 model is higher side as compared with CanESM2, CGCM3.These results can provide understanding of the hydrologic role of future climate change scenarios, which is essential for probable impacts of climate change for planning and management of appropriate choice for designing the storm water drainage system and infrastructure for newly growing urbanization under climate change are of great concern to hydrologists, water managers, and policymakers


2016 ◽  
Vol 7 (4) ◽  
pp. 764-774 ◽  
Author(s):  
K. Srinivasa Raju ◽  
D. Nagesh Kumar

Global climate models (GCMs) are gaining importance due to their capability to ascertain climate variables that will be useful to develop long, medium and short term water resources planning strategies. The applicability of K-Means cluster analysis is explored for grouping 36 GCMs from Coupled Model Intercomparison Project 5 for maximum temperature (MAXT), minimum temperature (MINT) and a combination of maximum and minimum temperature (COMBT) over India. Cluster validation methods, namely the Davies–Bouldin Index (DBI) and F-statistic, are used to obtain an optimal number of clusters of GCMs for India. The indicator chosen for evaluation of GCMs is the probability density function based skill score. It is noticed that the optimal number of clusters for MAXT, MINT and COMBT scenarios are 3, 2 and 2, respectively. Accordingly, suitable ensembles of GCMs are suggested for India for MAXT, MINT and COMBT individually. The suggested methodology can be extended to any number of GCMs and indicators, with minor modifications.


2012 ◽  
Vol 9 (8) ◽  
pp. 9847-9884
Author(s):  
N. Guyennon ◽  
E. Romano ◽  
I. Portoghese ◽  
F. Salerno ◽  
S. Calmanti ◽  
...  

Abstract. Various downscaling techniques have been developed to bridge the scale gap between global climate models (GCMs) and finer scales required to assess hydrological impacts of climate change. Such techniques may be grouped into two downscaling approaches: the deterministic dynamical downscaling (DD) and the stochastic statistical downscaling (SD). Although SD has been traditionally seen as an alternative to DD, recent works on statistical downscaling have aimed to combine the benefits of these two approaches. The overall objective of this study is to examine the relative benefits of each downscaling approach and their combination in making the GCM scenarios suitable for basin scale hydrological applications. The case study presented here focuses on the Apulia region (South East of Italy, surface area about 20 000 km2), characterized by a typical Mediterranean climate; the monthly cumulated precipitation and monthly mean of daily minimum and maximum temperature distribution were examined for the period 1953–2000. The fifth-generation ECHAM model from the Max-Planck-Institute for Meteorology was adopted as GCM. The DD was carried out with the Protheus system (ENEA), while the SD was performed through a monthly quantile-quantile transform. The SD resulted efficient in reducing the mean bias in the spatial distribution at both annual and seasonal scales, but it was not able to correct the miss-modeled non-stationary components of the GCM dynamics. The DD provided a partial correction by enhancing the trend spatial heterogeneity and time evolution predicted by the GCM, although the comparison with observations resulted still underperforming. The best results were obtained through the combination of both DD and SD approaches.


2021 ◽  
Author(s):  
Tongtiegang Zhao ◽  
Haoling Chen ◽  
Quanxi Shao

Abstract. Climate teleconnections are essential for the verification of valuable precipitation forecasts generated by global climate models (GCMs). This paper develops a novel approach to attributing correlation skill of dynamical GCM forecasts to statistical El Niño-Southern Oscillation (ENSO) teleconnection by using the coefficient of determination (R2). Specifically, observed precipitation is respectively regressed against GCM forecasts, Niño3.4 and both of them and then the intersection operation is implemented to quantify the overlapping R2 for GCM forecasts and Niño3.4. The significance of overlapping R2 and the sign of ENSO teleconnection facilitate three cases of attribution, i.e., significantly positive anomaly correlation attributable to positive ENSO teleconnection, attributable to negative ENSO teleconnection and not attributable to ENSO teleconnection. A case study is devised for the Climate Forecast System version 2 (CFSv2) seasonal forecasts of global precipitation. For grid cells around the world, the ratio of significantly positive anomaly correlation attributable to positive (negative) ENSO teleconnection is respectively 10.8 % (11.7 %) in December-January-February (DJF), 7.1 % (7.3 %) in March-April-May (MAM), 6.3 % (7.4 %) in June-July-August (JJA) and 7.0 % (14.3 %) in September-October-November (SON). The results not only confirm the prominent contributions of ENSO teleconnection to GCM forecasts, but also present spatial plots of regions where significantly positive anomaly correlation is subject to positive ENSO teleconnection, negative ENSO teleconnection and teleconnections other than ENSO. Overall, the proposed attribution approach can serve as an effective tool to investigate the source of predictability for GCM seasonal forecasts of global precipitation.


2022 ◽  
Author(s):  
Mohammad Naser Sediqi ◽  
Vempi Satriya Adi Hendrawan ◽  
Daisuke Komori

Abstract The global climate models (GCMs) of Coupled Model Intercomparison Project phase 6 (CMIP6) were used spatiotemporal projections of precipitation and temperature over Afghanistan for three shared socioeconomic pathways (SSP1-2.6, 2-4.5 and 5-8.5) and two future time horizons, early (2020-2059) and late (2060-2099). The Compromise Programming (CP) approach was employed to order the GCMs based on their skill to replicate precipitation and temperature climatology for the reference period (1975-2014). Three models, namely ACCESS-CM2, MPI-ESM1-2-LR, and FIO-ESM-2-0, showed the highest skill in simulating all three variables, and therefore, were chosen for the future projections. The ensemble mean of the GCMs showed an increase in maximum temperature by 1.5-2.5oC, 2.7-4.3 oC, and 4.5-5.3 oC and minimum temperature by 1.3-1.8 oC, 2.2-3.5 oC, and 4.6-5.2 oC for SSP1-2.6, SSP2-4.5, and SSP5-8.5, respectively in the later period. Meanwhile, the changes in precipitation in the range of -15-18%, -36-47% and -40-68% for SSP1-2.6, SSP2-4.5, and SSP5-8.5, respectively. The temperature and precipitation were projected to increase in the highlands and decrease over the deserts, indicating dry regions would be drier and wet regions wetter.


2020 ◽  
Author(s):  
Tao Tang ◽  
Drew Shindell ◽  
Yuqiang Zhang ◽  
Apostolos Voulgarakis ◽  
Jean-Francois Lamarque ◽  
...  

Abstract. Shortwave cloud radiative effects (SWCRE), defined as the difference of shortwave radiative flux between all-sky and clear-sky conditions, have been reported to play an important role in influencing the Earth’s energy budget and temperature extremes. In this study, we employed a set of global climate models to examine the SWCRE responses to CO2, black carbon (BC) aerosols and sulfate aerosols in boreal summer over the Northern Hemisphere. We found that CO2 causes positive SWCRE changes over most of the NH, and BC causes similar positive responses over North America, Europe and East China but negative SWCRE over India and tropical Africa. When normalized by effective radiative forcing, the SWCRE from BC is roughly 3–5 times larger than that from CO2. SWCRE change is mainly due to cloud cover changes resulting from the changes in relative humidity (RH) and, to a lesser extent, changes in circulation and stability. The SWCRE response to sulfate aerosols, however, is negligible compared to that for CO2 and BC. Using a multilinear regression model, it is found that mean daily maximum temperature (Tmax) increases by 0.15 K and 0.13 K per W m−2 increase in local SWCRE under the CO2 and BC experiment, respectively. When domain-averaged, the SWCRE change contribution to summer mean Tmax changes was 10–30 % under CO2 forcing and 30–50 % under BC forcing, varying by region, which can have important implications for extreme climatic events and socio-economic activities.


2020 ◽  
Vol 59 (2) ◽  
pp. 207-235 ◽  
Author(s):  
Lei Zhang ◽  
YinLong Xu ◽  
ChunChun Meng ◽  
XinHua Li ◽  
Huan Liu ◽  
...  

AbstractIn aiming for better access to climate change information and for providing climate service, it is important to obtain reliable high-resolution temperature simulations. Systematic comparisons are still deficient between statistical and dynamic downscaling techniques because of their inherent unavoidable uncertainties. In this paper, 20 global climate models (GCMs) and one regional climate model [Providing Regional Climates to Impact Studies (PRECIS)] are employed to evaluate their capabilities in reproducing average trends of mean temperature (Tm), maximum temperature (Tmax), minimum temperature (Tmin), diurnal temperature range (DTR), and extreme events represented by frost days (FD) and heat-wave days (HD) across China. It is shown generally that bias of temperatures from GCMs relative to observations is over ±1°C across more than one-half of mainland China. PRECIS demonstrates better representation of temperatures (except for HD) relative to GCMs. There is relatively better performance in Huanghuai, Jianghuai, Jianghan, south Yangzi River, and South China, whereas estimation is not as good in Xinjiang, the eastern part of northwest China, and the Tibetan Plateau. Bias-correction spatial disaggregation is used to downscale GCMs outputs, and bias correction is applied for PRECIS outputs, which demonstrate better improvement to a bias within ±0.2°C for Tm, Tmax, Tmin, and DTR and ±2 days for FD and HD. Furthermore, such improvement is also verified by the evidence of increased spatial correlation coefficient and symmetrical uncertainty, decreased root-mean-square error, and lower standard deviation for reproductions. It is seen from comprehensive ranking metrics that different downscaled models show the most improvement across different climatic regions, implying that optional ensembles of models should be adopted to provide sufficient high-quality climate information.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1239
Author(s):  
Mirindra Finaritra Rabezanahary Tanteliniaina ◽  
Md. Hasibur Rahaman ◽  
Jun Zhai

The assessment of the impacts of climate change on hydrology is important for better water resources management. However, few studies have been conducted in semi-arid Africa, even less in Madagascar. Here we report, climate-induced future hydrological prediction in Mangoky river, Madagascar using an artificial neural network (ANN) and the soil and water assessment tool (SWAT). The current study downscaled two global climate models on the mid-term, noted the 2040s (2041–2050) and long-term, noted 2090s (2091–2099) under two shared socioeconomic pathways (SSP) scenarios, SSP 3–7.0 and SSP 5–8.5. Statistical indices of both ANN and SWAT showed good performance (R2 > 0.65) of the models. Our results revealed a rise in maximum temperature (4.26–4.69 °C) and minimum temperature (2.74–3.01 °C) in the 2040s and 2090s. Under SSP 3–7.0 and SSP 5–8.5, a decline in the annual precipitation is projected in the 2040s and increased the 2090s. This study found that future precipitation and temperature could significantly decrease annual runoff by 60.59% and 73.77% in the 2040s; and 25.18% and 23.45% in the 2090s under SSP 3–7.0 and SSP 5–8.5, respectively. Our findings could be useful for the adaptation to climate change, managing water resources, and water engineering.


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1516 ◽  
Author(s):  
Zhijie Ta ◽  
Yang Yu ◽  
Lingxiao Sun ◽  
Xi Chen ◽  
Guijin Mu ◽  
...  

The Coupled Model Intercomparison Project Phase 5 (CMIP5) provides data, which is widely used to assess global and regional climate change. In this study, we evaluated the ability of 37 global climate models (GCMs) of CMIP5 to simulate historical precipitation in Central Asia (CA). The relative root mean square error (RRMSE), spatial correlation coefficient, and Kling-Gupta efficiency (KGE) were used as criteria for evaluation. The precipitation simulation results of GCMs were compared with the Climatic Research Unit (CRU) precipitation in 1986–2005. Most models show a variety of precipitation simulation capabilities both spatially and temporally, whereas the top six models were identified as having good performance in CA, including HadCM3, MIROC5, MPI-ESM-LR, MPI-ESM-P, CMCC-CM, and CMCC-CMS. As the GCMs have large uncertainties in the prediction of future precipitation, it is difficult to find the best model to predict future precipitation in CA. Multi-Model Ensemble (MME) results can give a good simulation of precipitation, and are superior to individual models.


Sign in / Sign up

Export Citation Format

Share Document