scholarly journals Deep Cybersecurity: A Comprehensive Overview from Neural Network and Deep Learning Perspective

Author(s):  
Iqbal H. Sarker

Deep learning (DL), which is originated from an artificial neural network (ANN), is one of the major technologies of today's smart cybersecurity systems or policies to function in an intelligent manner. Popular deep learning techniques, such as Multi-layer Perceptron (MLP), Convolutional Neural Network (CNN or ConvNet), Recurrent Neural Network (RNN) or Long Short-Term Memory (LSTM), Self-organizing Map (SOM), Auto-Encoder (AE), Restricted Boltzmann Machine (RBM), Deep Belief Networks (DBN), Generative Adversarial Network (GAN), Deep Transfer Learning (DTL or Deep TL), Deep Reinforcement Learning (DRL or Deep RL), or their ensembles and hybrid approaches can be used to intelligently tackle the diverse cybersecurity issues. In this paper, we aim to present a comprehensive overview from the perspective of these neural networks and deep learning techniques according to today's diverse needs. We also discuss the applicability of these techniques in various cybersecurity tasks such as intrusion detection, identification of malware or botnets, phishing, predicting cyber-attacks, e.g. denial of service (DoS), fraud detection or cyber-anomalies, etc. Finally, we highlight several research issues and future directions within the scope of our study in the field. Overall, the ultimate goal of this paper is to serve as a reference point and guidelines for the academia and professionals in the cyber industries, especially from the deep learning point of view.

Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 4953
Author(s):  
Sara Al-Emadi ◽  
Abdulla Al-Ali ◽  
Abdulaziz Al-Ali

Drones are becoming increasingly popular not only for recreational purposes but in day-to-day applications in engineering, medicine, logistics, security and others. In addition to their useful applications, an alarming concern in regard to the physical infrastructure security, safety and privacy has arisen due to the potential of their use in malicious activities. To address this problem, we propose a novel solution that automates the drone detection and identification processes using a drone’s acoustic features with different deep learning algorithms. However, the lack of acoustic drone datasets hinders the ability to implement an effective solution. In this paper, we aim to fill this gap by introducing a hybrid drone acoustic dataset composed of recorded drone audio clips and artificially generated drone audio samples using a state-of-the-art deep learning technique known as the Generative Adversarial Network. Furthermore, we examine the effectiveness of using drone audio with different deep learning algorithms, namely, the Convolutional Neural Network, the Recurrent Neural Network and the Convolutional Recurrent Neural Network in drone detection and identification. Moreover, we investigate the impact of our proposed hybrid dataset in drone detection. Our findings prove the advantage of using deep learning techniques for drone detection and identification while confirming our hypothesis on the benefits of using the Generative Adversarial Networks to generate real-like drone audio clips with an aim of enhancing the detection of new and unfamiliar drones.


2021 ◽  
Vol 4 (1) ◽  
pp. 121-128
Author(s):  
A Iorliam ◽  
S Agber ◽  
MP Dzungwe ◽  
DK Kwaghtyo ◽  
S Bum

Social media provides opportunities for individuals to anonymously communicate and express hateful feelings and opinions at the comfort of their rooms. This anonymity has become a shield for many individuals or groups who use social media to express deep hatred for other individuals or groups, tribes or race, religion, gender, as well as belief systems. In this study, a comparative analysis is performed using Long Short-Term Memory and Convolutional Neural Network deep learning techniques for Hate Speech classification. This analysis demonstrates that the Long Short-Term Memory classifier achieved an accuracy of 92.47%, while the Convolutional Neural Network classifier achieved an accuracy of 92.74%. These results showed that deep learning techniques can effectively classify hate speech from normal speech.


2021 ◽  
Vol 7 ◽  
pp. e365
Author(s):  
Nikita Bhandari ◽  
Satyajeet Khare ◽  
Rahee Walambe ◽  
Ketan Kotecha

Gene promoters are the key DNA regulatory elements positioned around the transcription start sites and are responsible for regulating gene transcription process. Various alignment-based, signal-based and content-based approaches are reported for the prediction of promoters. However, since all promoter sequences do not show explicit features, the prediction performance of these techniques is poor. Therefore, many machine learning and deep learning models have been proposed for promoter prediction. In this work, we studied methods for vector encoding and promoter classification using genome sequences of three distinct higher eukaryotes viz. yeast (Saccharomyces cerevisiae), A. thaliana (plant) and human (Homo sapiens). We compared one-hot vector encoding method with frequency-based tokenization (FBT) for data pre-processing on 1-D Convolutional Neural Network (CNN) model. We found that FBT gives a shorter input dimension reducing the training time without affecting the sensitivity and specificity of classification. We employed the deep learning techniques, mainly CNN and recurrent neural network with Long Short Term Memory (LSTM) and random forest (RF) classifier for promoter classification at k-mer sizes of 2, 4 and 8. We found CNN to be superior in classification of promoters from non-promoter sequences (binary classification) as well as species-specific classification of promoter sequences (multiclass classification). In summary, the contribution of this work lies in the use of synthetic shuffled negative dataset and frequency-based tokenization for pre-processing. This study provides a comprehensive and generic framework for classification tasks in genomic applications and can be extended to various classification problems.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Yirui Wu ◽  
Dabao Wei ◽  
Jun Feng

With the development of the fifth-generation networks and artificial intelligence technologies, new threats and challenges have emerged to wireless communication system, especially in cybersecurity. In this paper, we offer a review on attack detection methods involving strength of deep learning techniques. Specifically, we firstly summarize fundamental problems of network security and attack detection and introduce several successful related applications using deep learning structure. On the basis of categorization on deep learning methods, we pay special attention to attack detection methods built on different kinds of architectures, such as autoencoders, generative adversarial network, recurrent neural network, and convolutional neural network. Afterwards, we present some benchmark datasets with descriptions and compare the performance of representing approaches to show the current working state of attack detection methods with deep learning structures. Finally, we summarize this paper and discuss some ways to improve the performance of attack detection under thoughts of utilizing deep learning structures.


2021 ◽  
Vol 5 (4) ◽  
pp. 380
Author(s):  
Abdulkareem A. Hezam ◽  
Salama A. Mostafa ◽  
Zirawani Baharum ◽  
Alde Alanda ◽  
Mohd Zaki Salikon

Distributed-Denial-of-Service impacts are undeniably significant, and because of the development of IoT devices, they are expected to continue to rise in the future. Even though many solutions have been developed to identify and prevent this assault, which is mainly targeted at IoT devices, the danger continues to exist and is now larger than ever. It is common practice to launch denial of service attacks in order to prevent legitimate requests from being completed. This is accomplished by swamping the targeted machines or resources with false requests in an attempt to overpower systems and prevent many or all legitimate requests from being completed. There have been many efforts to use machine learning to tackle puzzle-like middle-box problems and other Artificial Intelligence (AI) problems in the last few years. The modern botnets are so sophisticated that they may evolve daily, as in the case of the Mirai botnet, for example. This research presents a deep learning method based on a real-world dataset gathered by infecting nine Internet of Things devices with two of the most destructive DDoS botnets, Mirai and Bashlite, and then analyzing the results. This paper proposes the BiLSTM-CNN model that combines Bidirectional Long-Short Term Memory Recurrent Neural Network and Convolutional Neural Network (CNN). This model employs CNN for data processing and feature optimization, and the BiLSTM is used for classification. This model is evaluated by comparing its results with three standard deep learning models of CNN, Recurrent Neural Network (RNN), and long-Short Term Memory Recurrent Neural Network (LSTM–RNN). There is a huge need for more realistic datasets to fully test such models' capabilities, and where N-BaIoT comes, it also includes multi-device IoT data. The N-BaIoT dataset contains DDoS attacks with the two of the most used types of botnets: Bashlite and Mirai. The 10-fold cross-validation technique tests the four models. The obtained results show that the BiLSTM-CNN outperforms all other individual classifiers in every aspect in which it achieves an accuracy of 89.79% and an error rate of 0.1546 with a very high precision of 93.92% with an f1-score and recall of 85.73% and 89.11%, respectively. The RNN achieves the highest accuracy among the three individual models, with an accuracy of 89.77%, followed by LSTM, which achieves the second-highest accuracy of 89.71%. CNN, on the other hand, achieves the lowest accuracy among all classifiers of 89.50%.


Author(s):  
Thang

In this research, we propose a method of human robot interactive intention prediction. The proposed algorithm makes use of a OpenPose library and a Long-short term memory deep learning neural network. The neural network observes the human posture in a time series, then predicts the human interactive intention. We train the deep neural network using dataset generated by us. The experimental results show that, our proposed method is able to predict the human robot interactive intention, providing 92% the accuracy on the testing set.


2021 ◽  
Vol 21 (3) ◽  
pp. 175-188
Author(s):  
Sumaiya Thaseen Ikram ◽  
Aswani Kumar Cherukuri ◽  
Babu Poorva ◽  
Pamidi Sai Ushasree ◽  
Yishuo Zhang ◽  
...  

Abstract Intrusion Detection Systems (IDSs) utilise deep learning techniques to identify intrusions with maximum accuracy and reduce false alarm rates. The feature extraction is also automated in these techniques. In this paper, an ensemble of different Deep Neural Network (DNN) models like MultiLayer Perceptron (MLP), BackPropagation Network (BPN) and Long Short Term Memory (LSTM) are stacked to build a robust anomaly detection model. The performance of the ensemble model is analysed on different datasets, namely UNSW-NB15 and a campus generated dataset named VIT_SPARC20. Other types of traffic, namely unencrypted normal traffic, normal encrypted traffic, encrypted and unencrypted malicious traffic, are captured in the VIT_SPARC20 dataset. Encrypted normal and malicious traffic of VIT_SPARC20 is categorised by the deep learning models without decrypting its contents, thus preserving the confidentiality and integrity of the data transmitted. XGBoost integrates the results of each deep learning model to achieve higher accuracy. From experimental analysis, it is inferred that UNSW_ NB results in a maximal accuracy of 99.5%. The performance of VIT_SPARC20 in terms of accuracy, precision and recall are 99.4%. 98% and 97%, respectively.


2020 ◽  
Vol 4 (2) ◽  
pp. 371-379
Author(s):  
David.O. Oyewola ◽  
Bernard Alechenu ◽  
Kuluwa A. Al-Mustapha ◽  
Oluwatoyosi .V. Oyewande

Dementia is the most frequent degenerative sickness in adults where early diagnosis can forestall or prolong progression. In this study, we used a deep learning techniques for classification of dementia. Data were collected from OASIS database of all the patients receiving dementia screening. The data included the patient’s sex, age, education, social economic status, Mini-Mental State Examination, Clinical Dementia Rating, Atlas Scaling Factor, Estimated Total Intracranial Volume and Normalized Whole Brain Volume. The performance of every algorithm is juxtaposed with Generalized Regression Neural Network (GRNN), Radial Basis Neural Network (RBNN), Multilayer Perceptron Neural Network (MPNN) and Long Short Term Memory (LSTM) using Sensitivity, Specificity, Detection Rate. The results show that with 100% efficiency, GRNN, RBNN and LSTM tend to be the best in the classification of dementia. The use of deep learning such as LSTM for early diagnosis of dementia can help improve the process of dementia diagnosis.


2021 ◽  
Author(s):  
Usha Devi G ◽  
Priyan M K ◽  
Gokulnath Chandra Babu ◽  
Gayathri Karthick

Abstract Twitter sentiment analysis is an automated process of analyzing the text data which determining the opinion or feeling of public tweets from the various fields. For example, in marketing field, political field huge number of tweets is posting with hash tags every moment via internet from one user to another user. This sentiment analysis is a challenging task for the researchers mainly to correct interpretation of context in which certain tweet words are difficult to evaluate what truly is negative and positive statement from the huge corpus of tweet data. This problem violates the integrity of the system and the user reliability can be significantly reduced. In this paper, we identify the each tweet word and we are assigning a meaning into it. The feature work is combined with tweet words, word2vec, stop words and integrated into the deep learning techniques of Convolution neural network model and Long short Term Memory, these algorithms can identify the pattern of stop word counts with its own strategy. Those two models are well trained and applied for IMDB dataset which contains 50,000 movie reviews. With huge amount of twitter data is processed for predicting the sentimental tweets for classification. With the proposed methodology, the samples are experimentally collected from the real-time environment can be discriminated well and the efficacy of the system is improved. The result of Deep Learning algorithms aims to rate the review tweets and also able to identify movie review with testing accuracy as 87.74% and 88.02%.


2022 ◽  
Vol 10 (1) ◽  
pp. 0-0

India is an agricultural region and the economy of the country depends upon agriculture. Change in climatic parameters (like rainfall, soil, etc) directly affect the growth of crops. This parameter has an unswerving effect on the quantity of food production. Information extraction from the agricultural domain through rainfall prediction has been one of the most challenging issues around the world in recent years because of climatic changes. To evaluate the feasibility of rain by employing some data analytics and machine learning techniques are developed. This paper proposes an enhanced deep learning-based approach known as Deep Regression Network (DRN). The proposed DRN is a 6-layer deep neural network. The proposed algorithm trains and tests on the agricultural corpus, collected from Dehradun (India) region. The experimental outcomes state that the proposed DRN method attained a prediction accuracy approx 86.56%. The comparative analysis shows that the proposed method outperformed existing methods like Ensemble Neural Network, Naïve Bayes, KNN, and Weighted Self-Organizing Map.


Sign in / Sign up

Export Citation Format

Share Document