Information Extraction from Agricultural and Weather Domain using Deep Learning Approach

2022 ◽  
Vol 10 (1) ◽  
pp. 0-0

India is an agricultural region and the economy of the country depends upon agriculture. Change in climatic parameters (like rainfall, soil, etc) directly affect the growth of crops. This parameter has an unswerving effect on the quantity of food production. Information extraction from the agricultural domain through rainfall prediction has been one of the most challenging issues around the world in recent years because of climatic changes. To evaluate the feasibility of rain by employing some data analytics and machine learning techniques are developed. This paper proposes an enhanced deep learning-based approach known as Deep Regression Network (DRN). The proposed DRN is a 6-layer deep neural network. The proposed algorithm trains and tests on the agricultural corpus, collected from Dehradun (India) region. The experimental outcomes state that the proposed DRN method attained a prediction accuracy approx 86.56%. The comparative analysis shows that the proposed method outperformed existing methods like Ensemble Neural Network, Naïve Bayes, KNN, and Weighted Self-Organizing Map.

Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2258
Author(s):  
Madhab Raj Joshi ◽  
Lewis Nkenyereye ◽  
Gyanendra Prasad Joshi ◽  
S. M. Riazul Islam ◽  
Mohammad Abdullah-Al-Wadud ◽  
...  

Enhancement of Cultural Heritage such as historical images is very crucial to safeguard the diversity of cultures. Automated colorization of black and white images has been subject to extensive research through computer vision and machine learning techniques. Our research addresses the problem of generating a plausible colored photograph of ancient, historically black, and white images of Nepal using deep learning techniques without direct human intervention. Motivated by the recent success of deep learning techniques in image processing, a feed-forward, deep Convolutional Neural Network (CNN) in combination with Inception- ResnetV2 is being trained by sets of sample images using back-propagation to recognize the pattern in RGB and grayscale values. The trained neural network is then used to predict two a* and b* chroma channels given grayscale, L channel of test images. CNN vividly colorizes images with the help of the fusion layer accounting for local features as well as global features. Two objective functions, namely, Mean Squared Error (MSE) and Peak Signal-to-Noise Ratio (PSNR), are employed for objective quality assessment between the estimated color image and its ground truth. The model is trained on the dataset created by ourselves with 1.2 K historical images comprised of old and ancient photographs of Nepal, each having 256 × 256 resolution. The loss i.e., MSE, PSNR, and accuracy of the model are found to be 6.08%, 34.65 dB, and 75.23%, respectively. Other than presenting the training results, the public acceptance or subjective validation of the generated images is assessed by means of a user study where the model shows 41.71% of naturalness while evaluating colorization results.


Vibration ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 341-356
Author(s):  
Jessada Sresakoolchai ◽  
Sakdirat Kaewunruen

Various techniques have been developed to detect railway defects. One of the popular techniques is machine learning. This unprecedented study applies deep learning, which is a branch of machine learning techniques, to detect and evaluate the severity of rail combined defects. The combined defects in the study are settlement and dipped joint. Features used to detect and evaluate the severity of combined defects are axle box accelerations simulated using a verified rolling stock dynamic behavior simulation called D-Track. A total of 1650 simulations are run to generate numerical data. Deep learning techniques used in the study are deep neural network (DNN), convolutional neural network (CNN), and recurrent neural network (RNN). Simulated data are used in two ways: simplified data and raw data. Simplified data are used to develop the DNN model, while raw data are used to develop the CNN and RNN model. For simplified data, features are extracted from raw data, which are the weight of rolling stock, the speed of rolling stock, and three peak and bottom accelerations from two wheels of rolling stock. In total, there are 14 features used as simplified data for developing the DNN model. For raw data, time-domain accelerations are used directly to develop the CNN and RNN models without processing and data extraction. Hyperparameter tuning is performed to ensure that the performance of each model is optimized. Grid search is used for performing hyperparameter tuning. To detect the combined defects, the study proposes two approaches. The first approach uses one model to detect settlement and dipped joint, and the second approach uses two models to detect settlement and dipped joint separately. The results show that the CNN models of both approaches provide the same accuracy of 99%, so one model is good enough to detect settlement and dipped joint. To evaluate the severity of the combined defects, the study applies classification and regression concepts. Classification is used to evaluate the severity by categorizing defects into light, medium, and severe classes, and regression is used to estimate the size of defects. From the study, the CNN model is suitable for evaluating dipped joint severity with an accuracy of 84% and mean absolute error (MAE) of 1.25 mm, and the RNN model is suitable for evaluating settlement severity with an accuracy of 99% and mean absolute error (MAE) of 1.58 mm.


2020 ◽  
Vol 17 (4) ◽  
pp. 1925-1930
Author(s):  
Ambeshwar Kumar ◽  
R. Manikandan ◽  
Robbi Rahim

It’s a new era technology in the field of medical engineering giving awareness about the various healthcare features. Deep learning is a part of machine learning, it is capable of handling high dimensional data and is efficient in concentrating on the right features. Tumor is an unbelievably complex disease: a multifaceted cell has more than hundred billion cells; each cell acquires mutation exclusively. Detection of tumor particles in experiment is easily done by MRI or CT. Brain tumors can also be detected by MRI, however, deep learning techniques give a better approach to segment the brain tumor images. Deep Learning models are imprecisely encouraged by information handling and communication designs in biological nervous system. Classification plays an significant role in brain tumor detection. Neural network is creating a well-organized rule for classification. To accomplish medical image data, neural network is trained to use the Convolution algorithm. Multilayer perceptron is intended for identification of a image. In this study article, the brain images are categorized into two types: normal and abnormal. This article emphasize the importance of classification and feature selection approach for predicting the brain tumor. This classification is done by machine learning techniques like Artificial Neural Networks, Support Vector Machine and Deep Neural Network. It could be noted that more than one technique can be applied for the segmentation of tumor. The several samples of brain tumor images are classified using deep learning algorithms, convolution neural network and multi-layer perceptron.


Author(s):  
Iqbal H. Sarker

Deep learning (DL), which is originated from an artificial neural network (ANN), is one of the major technologies of today's smart cybersecurity systems or policies to function in an intelligent manner. Popular deep learning techniques, such as Multi-layer Perceptron (MLP), Convolutional Neural Network (CNN or ConvNet), Recurrent Neural Network (RNN) or Long Short-Term Memory (LSTM), Self-organizing Map (SOM), Auto-Encoder (AE), Restricted Boltzmann Machine (RBM), Deep Belief Networks (DBN), Generative Adversarial Network (GAN), Deep Transfer Learning (DTL or Deep TL), Deep Reinforcement Learning (DRL or Deep RL), or their ensembles and hybrid approaches can be used to intelligently tackle the diverse cybersecurity issues. In this paper, we aim to present a comprehensive overview from the perspective of these neural networks and deep learning techniques according to today's diverse needs. We also discuss the applicability of these techniques in various cybersecurity tasks such as intrusion detection, identification of malware or botnets, phishing, predicting cyber-attacks, e.g. denial of service (DoS), fraud detection or cyber-anomalies, etc. Finally, we highlight several research issues and future directions within the scope of our study in the field. Overall, the ultimate goal of this paper is to serve as a reference point and guidelines for the academia and professionals in the cyber industries, especially from the deep learning point of view.


Author(s):  
Tamanna Sharma ◽  
Anu Bajaj ◽  
Om Prakash Sangwan

Sentiment analysis is computational measurement of attitude, opinions, and emotions (like positive/negative) with the help of text mining and natural language processing of words and phrases. Incorporation of machine learning techniques with natural language processing helps in analysing and predicting the sentiments in more precise manner. But sometimes, machine learning techniques are incapable in predicting sentiments due to unavailability of labelled data. To overcome this problem, an advanced computational technique called deep learning comes into play. This chapter highlights latest studies regarding use of deep learning techniques like convolutional neural network, recurrent neural network, etc. in sentiment analysis.


Author(s):  
Ahlam Wahdan ◽  
Sendeyah AL Hantoobi ◽  
Said A. Salloum ◽  
Khaled Shaalan

Classifying or categorizing texts is the process by which documents are classified into groups by subject, title, author, etc. This paper undertakes a systematic review of the latest research in the field of the classification of Arabic texts. Several machine learning techniques can be used for text classification, but we have focused only on the recent trend of neural network algorithms. In this paper, the concept of classifying texts and classification processes are reviewed. Deep learning techniques in classification and its type are discussed in this paper as well. Neural networks of various types, namely, RNN, CNN, FFNN, and LSTM, are identified as the subject of study. Through systematic study, 12 research papers related to the field of the classification of Arabic texts using neural networks are obtained: for each paper the methodology for each type of neural network and the accuracy ration for each type is determined. The evaluation criteria used in the algorithms of different neural network types and how they play a large role in the highly accurate classification of Arabic texts are discussed. Our results provide some findings regarding how deep learning models can be used to improve text classification research in Arabic language.


Author(s):  
Kayalvizhi S. ◽  
Thenmozhi D.

Catch phrases are the important phrases that precisely explain the document. They represent the context of the whole document. They can also be used to retrieve relevant prior cases by the judges and lawyers for assuring justice in the domain of law. Currently, catch phrases are extracted using statistical methods, machine learning techniques, and deep learning techniques. The authors propose a sequence to sequence (Seq2Seq) deep neural network to extract catch phrases from legal documents. They have employed several layers, namely embedding layer, encoder-decoder layer, projection layer, and loss layer to build the deep neural network. The methodology is evaluated on IRLeD@FIRE-2017 dataset and the method has obtained 0.787 and 0.607 as mean average precision and recall scores respectively. Results show that the proposed method outperforms the existing systems.


2019 ◽  
Vol 16 (8) ◽  
pp. 3319-3323 ◽  
Author(s):  
J. Refonaa ◽  
M. Lakshmi ◽  
S. Dhamodaran ◽  
Surya Teja ◽  
T. N. M. Pradeep

Rainfall prediction accuracy in meteorological department is still a major research area. Accuracy in prediction of rainfall may help in knowing heavy rainfall prior and preventing disasters. This mainly associated with economy and human life. There is necessary for efficient prediction system to identify drought and flood prior, so that people and government can get prepared for any disaster. Our country economy are mainly depends on agriculture, there is a great importance for rainfall prediction in India. Dynamics in atmosphere is the major cause for failure of existing statistical techniques for rainfall prediction. Taking these in consideration, we propose, Neural network based rain fall prediction for better showing better performance. We exploit machine learning, in which neural network model is used from Keras package available in Python. The objective of the work is to make this model more reliable for non-technical persons.


2021 ◽  
pp. 1-28
Author(s):  
Aakanksha Sharaff ◽  
Ramya Allenki ◽  
Rakhi Seth

Sentiment analysis works on the principle of categorizing and identifying the text-based content and the process of classifying documents into one of the predefined classes commonly known as text classification. Hackers deploy a strategy by sending malicious content as an advertisement link and attack the user system to gain information. For protecting the system from this type of phishing attack, one needs to classify the spam data. This chapter is based on a discussion and comparison of various classification models that are used for phishing SMS detection through sentiment analysis. In this chapter, SMS data is collected from Kaggle, which is classified as ham or spam; while implementing the deep learning techniques like Convolutional Neural Network (CNN), CNN with 7 layers, and CNN with 11 layers, different results are generated. For evaluating these results, different machine learning techniques are used as a baseline algorithm like Naive Bayes, Decision Trees, Support Vector Machine (SVM), and Artificial Neural Network (ANN). After evaluation, CNN showed the highest accuracy of 99.47% as a classification model.


2019 ◽  
Vol 2019 (3) ◽  
pp. 191-209 ◽  
Author(s):  
Se Eun Oh ◽  
Saikrishna Sunkam ◽  
Nicholas Hopper

Abstract Recent advances in Deep Neural Network (DNN) architectures have received a great deal of attention due to their ability to outperform state-of-the-art machine learning techniques across a wide range of application, as well as automating the feature engineering process. In this paper, we broadly study the applicability of deep learning to website fingerprinting. First, we show that unsupervised DNNs can generate lowdimensional informative features that improve the performance of state-of-the-art website fingerprinting attacks. Second, when used as classifiers, we show that they can exceed performance of existing attacks across a range of application scenarios, including fingerprinting Tor website traces, fingerprinting search engine queries over Tor, defeating fingerprinting defenses, and fingerprinting TLS-encrypted websites. Finally, we investigate which site-level features of a website influence its fingerprintability by DNNs.


Sign in / Sign up

Export Citation Format

Share Document