scholarly journals Development of Tools for Coastal Management in Google Earth Engine: Uncertainty Bathtub Model and Bruun Rule

Author(s):  
Lucas Terres de Lima ◽  
Sandra Fernández-Fernández ◽  
João Francisco Gonçalves ◽  
Luiz Magalhães Filho ◽  
Cristina Bernardes

Sea-level rise is a problem increasingly affecting coastal areas worldwide. The existence of Free and Open-Source Models to estimate the sea-level impact can contribute to better coastal man-agement. This study aims to develop and to validate two different models to predict the sea-level rise impact supported by Google Earth Engine (GEE) – a cloud-based platform for planetary-scale environmental data analysis. The first model is a Bathtub Model based on the uncertainty of projections of the Sea-level Rise Impact Module of TerrSet - Geospatial Monitoring and Modeling System software. The validation process performed in the Rio Grande do Sul coastal plain (S Brazil) resulted in correlations from 0.75 to 1.00. The second model uses Bruun Rule formula implemented in GEE and is capable to determine the coastline retreat of a profile through the creation of a simple vector line from topo-bathymetric data. The model shows a very high cor-relation (0.97) with a classical Bruun Rule study performed in Aveiro coast (NW Portugal). The GEE platform seems to be an important tool for coastal management. The models developed have been openly shared, enabling the continuous improvement of the code by the scientific commu-nity.

2021 ◽  
Vol 13 (8) ◽  
pp. 1424
Author(s):  
Lucas Terres de Lima ◽  
Sandra Fernández-Fernández ◽  
João Francisco Gonçalves ◽  
Luiz Magalhães Filho ◽  
Cristina Bernardes

Sea-level rise is a problem increasingly affecting coastal areas worldwide. The existence of free and open-source models to estimate the sea-level impact can contribute to improve coastal management. This study aims to develop and validate two different models to predict the sea-level rise impact supported by Google Earth Engine (GEE)—a cloud-based platform for planetary-scale environmental data analysis. The first model is a Bathtub Model based on the uncertainty of projections of the sea-level rise impact module of TerrSet—Geospatial Monitoring and Modeling System software. The validation process performed in the Rio Grande do Sul coastal plain (S Brazil) resulted in correlations from 0.75 to 1.00. The second model uses the Bruun rule formula implemented in GEE and can determine the coastline retreat of a profile by creatting a simple vector line from topo-bathymetric data. The model shows a very high correlation (0.97) with a classical Bruun rule study performed in the Aveiro coast (NW Portugal). Therefore, the achieved results disclose that the GEE platform is suitable to perform these analysis. The models developed have been openly shared, enabling the continuous improvement of the code by the scientific community.


Author(s):  
Lucas Terres de Lima ◽  
Sandra Fernández-Fernández ◽  
João Francisco Gonçalves ◽  
Luiz Magalhães Filho ◽  
Cristina Bernardes

Sea-level rise is a problem increasingly affecting coastal areas worldwide. The existence 15 of Free and Open-Source Models to estimate the sea-level impact can contribute to better coastal 16 management. This study aims to develop and to validate two different models to predict the 17 sea-level rise impact supported by Google Earth Engine (GEE) – a cloud-based platform for plan-18 etary-scale environmental data analysis. The first model is a Bathtub Model based on the uncer-19 tainty of projections of the Sea-level Rise Impact Module of TerrSet - Geospatial Monitoring and 20 Modeling System software. The validation process performed in the Rio Grande do Sul coastal 21 plain (S Brazil) resulted in correlations from 0.75 to 1.00. The second model uses Bruun Rule for-22 mula implemented in GEE and is capable to determine the coastline retreat of a profile through the 23 creation of a simple vector line from topo-bathymetric data. The model shows a very high correla-24 tion (0.97) with a classical Bruun Rule study performed in Aveiro coast (NW Portugal). The GEE 25 platform seems to be an important tool for coastal management. The models developed have been 26 openly shared, enabling the continuous improvement of the code by the scientific community.


2020 ◽  
Vol 8 (2) ◽  
pp. 104 ◽  
Author(s):  
Pattrakorn Nidhinarangkoon ◽  
Sompratana Ritphring ◽  
Keiko Udo

Sea level rise due to climate change affects beaches, which are a source of high recreational value in the economy. The tourism carrying capacity (TCC) assessment is one of the tools to determine the management capacity of a beach. Pattaya beach represents the character of well-known beaches in Thailand, while Chalatat beach represents the character of beaches that are the focus of domestic tourism. To evaluate beach area this study detected the shoreline position using Google Earth images with tidal correction. The Bruun rule was used for shoreline projection. TCC was calculated by using the beach area, correction factors, and management capacity. The results find that the current effective carrying capacity is approximately 200,000 for Pattaya beach and 49,000 for Chalatat beach. Although the Chalatat beach areas are larger than Pattaya, the effective carrying capacity of Pattaya beach is larger than the effective carrying capacity of Chalatat beach for all situations because TCC is affected by beach areas, correction factors, and management capacity. Because beach areas experience the effects of sea-level rise, protection against future beach loss should be considered for coastal management.


Author(s):  
Walquer Huacani ◽  
Nelson P. Meza ◽  
Franklin Aguirre ◽  
Darío D. Sanchez ◽  
Evelyn N. Luque

The objective of this study is to analyze the deforestation of forest cover in the Apurimac region between 2001 and 2020 using the Google Earth Engine (GEE) platform, a planetary-scale platform for the analysis of environmental data. The methodology used in the analysis of the deforested area is based on the classification of cover, using a supervised classification method developed by the University of Maryland, based on a "decision tree".


2021 ◽  
Vol 9 (9) ◽  
pp. 974
Author(s):  
Maurizio D’Anna ◽  
Deborah Idier ◽  
Bruno Castelle ◽  
Sean Vitousek ◽  
Goneri Le Cozannet

Long-term (>decades) coastal recession due to sea-level rise (SLR) has been estimated using the Bruun Rule for nearly six decades. Equilibrium-based shoreline models have been shown to skillfully predict short-term wave-driven shoreline change on time scales of hours to decades. Both the Bruun Rule and equilibrium shoreline models rely on the equilibrium beach theory, which states that the beach profile shape equilibrates with its local wave and sea-level conditions. Integrating these two models into a unified framework can improve our understanding and predictive skill of future shoreline behavior. However, given that both models account for wave action, but over different time scales, a critical re-examination of the SLR-driven recession process is needed. We present a novel physical interpretation of the beach response to sea-level rise, identifying two main contributing processes: passive flooding and increased wave-driven erosion efficiency. Using this new concept, we analyze the integration of SLR-driven recession into equilibrium shoreline models and, with an idealized test case, show that the physical mechanisms underpinning the Bruun Rule are explicitly described within our integrated model. Finally, we discuss the possible advantages of integrating SLR-driven recession models within equilibrium-based models with dynamic feedbacks and the broader implications for coupling with hybrid shoreline models.


Author(s):  
Inti Carro ◽  
Leonardo Seijo ◽  
Gustavo J. Nagy ◽  
Ximena Lagos ◽  
Ofelia Gutiérrez

Purpose This study aims to show a case study of ecosystem-based adaptation (EbA) measures to increase coastal system’s resilience to extreme weather events and sea-level rise (SLR) implemented at Kiyú (Uruguayan coast of the Rio de la Plata river estuary). Design/methodology/approach A participatory process involving the community and institutional stakeholders was carried out to select and prioritise adaptation measures to reduce the erosion of sandy beaches, dunes and bluffs due to extreme wind storm surge and rainfall, SLR and mismanagement practices. The recovery of coastal ecosystems was implemented through soft measures (green infrastructure) such as revegetation with native species, dune regeneration, sustainable drainage systems and the reduction of use pressures. Findings Main achievements of this case study include capacity building of municipal staff and stakeholders, knowledge exchanges with national-level decision makers and scientists and the incorporation of EbA approaches by subnational-level coastal governments. To consolidate EbA, the local government introduced innovations in the coastal management institutional structure. Originality/value The outcomes of the article include, besides the increase in the resilience of social-ecological systems, the strengthening of socio-institutional behaviour, structure and sustainability. This experience provides insights for developing a strategy for both Integrated Coastal Management and climate adaptation at the national scale.


INSIST ◽  
2016 ◽  
Vol 1 (1) ◽  
pp. 65 ◽  
Author(s):  
A. Perwira Mulia Tarigan ◽  
Wiwin Nurzanah

Abstract – An examination of shoreline retreat is conducted over the muddy coast in the vicinities of the port of Belawan. The related sea level rise is estimated using the well-known Bruun Rule based on the characteristics of mud profile prevalent along the eastern coast of North Sumatera Province. The spatial analysis involved is done utilizing the concept and procedure of GIS. The averaged shoreline retreat over the hot spot area of erosion, i.e. 18 m per year, implies that the relative rate of sea level rise is in the range of 14 to 18 mm per year, indicating an extremely severe rate. In addition, three other cases of simple GIS applications related to coastal water of the port are spatially demonstrated.  Keywords –  coastal water, coastal erosion, sea level rise, and GIS


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2263
Author(s):  
Lida Davar ◽  
Gary Griggs ◽  
Afshin Danehkar ◽  
Abdolrassoul Salmanmahiny ◽  
Hossein Azarnivand ◽  
...  

Sea-level rise (SLR) is known as a central part of the Earth’s response to human-induced global warming and is projected to continue to rise over the twenty-first century and beyond. The importance of coastal areas for both human and natural systems has led researchers to conduct extensive studies on coastal vulnerability to SLR impacts and develop adaptation options to cope with rising sea level. Investigations to date have focused mostly on developed and highly populated coasts, as well as diverse ecosystems including tidal salt marshes and mangroves. As a result, there is less information on vulnerability and adaptation of less-developed and developing coasts to sea-level rise and its associated impacts. Hence, this research aimed at outlining an appropriate coastal management framework to adapt to SLR on the coasts that are in the early stage of development. A coastal area with a low level of development, located in southern Iran along the Gulf of Oman, was selected as a case study. The types of lands exposed to the high-end estimates of SLR by 2100 were identified and used as the primary criteria in determining the practical adaptation approaches for developing coasts. The result of coastal exposure assessment showed that, of five exposed land cover types, bare land, which is potentially considered for development, has the highest percentage of exposure to future sea-level rise. In order to protect the exposed coastal lands from future development and increase adaptive capacity of coastal systems, we developed a Spatial Integrated SLR Adaptive Management Plan Framework (SISAMP) based on an exposure reduction approach. Spatial land management tools and coastal exposure assessment models along with three other key components were integrated into the proposed conceptual framework to reduce coastal vulnerability through minimizing exposure of coastal communities to SLR-induced impacts. This adaptation plan provides a comprehensive approach for sustainable coastal management in a changing climate, particularly on developing coasts.


Sign in / Sign up

Export Citation Format

Share Document