scholarly journals Black Holes or an Objects without Event Horizon?

Author(s):  
Leonid Verozub

In this paper, we investigate the question of whether the generally accepted interpretation of the supermassive object in M87, investigated by EHT collaboration, is the only possible one. There are grounds for this, in particular, due to the detection of a magnetic field in its vicinity. For this purpose, the stability of self-gravitating objects is investigated based on the correct definition of the energy of gravitation in the framework of the bi-metric approach to the theory.

2011 ◽  
Vol 1 (1) ◽  
pp. 4 ◽  
Author(s):  
Felix F. Brezinski ◽  
Ahmad A. Hujeirat

A general relativistic model for the formation and acceleration of low mass-loaded jets from systems containing accreting black holes is presented. The model is based on previous numerical results and theoretical studies in the Newtonian regime, but modified to include the effects of space-time curvature in the vicinity of the event horizon of a spinning black hole. It is argued that the boundary layer between the Keplerian accretion disk and the event horizon is best suited for the formation and acceleration of the accretion-powered jets in active galactic nuclei and micro-quasars. The model presented here is based on matching the solutions of three different regions: i- a weakly magnetized Keplerian accretion disk in the outer part, where the transport of angular momentum is mediated through the magentorotational instability, ii- a strongly magnetized, advection-dominated and turbulent-free boundary layer (BL) between the outer cold accretion disk and the event horizon and where the plasma rotates sub-Keplerian and iii- a transition zone (TZ) between the BL and the overlying corona, where the electrons and protons are thermally uncoupled, highly dissipative and rotate super-Keplerian. In the BL, the gravitation-driven dynamical collapse of the plasma increases the strength of the poloidal magnetic field (PMF) significantly, subsequently suppressing the generation and dissipation of turbulence and turning off the primary source of heating. In this case, the BL appears much fainter than standard disk models so as if the disk truncates at a certain radius. The action of the PMF in the BL is to initiate torsional Alf`ven waves that transport angular momentum from the embedded plasma vertically into the TZ, where a significant fraction of the shear-generated toroidal magnetic field reconnects, thereby heating the protons up to the virial-temperature. Also, the strong PMF forces the electrons to cool rapidly, giving rise therefore to the formation of a gravitationally unbound two-temperature proton-dominated outflow. Our model predicts the known correlation between the Lorentz-factor and the spin parameter of the BH. It also shows that the effective surface of the BL, through which the baryons flow into the TZ, shrinks with increasing the spin parameter, implying therefore that low mass-loaded jets most likely originate from around Kerr black holes. When applying our model to the jet in the elliptical galaxy M87, we find a spin parameter <em>a ∈</em> [0.99, 0.998], a transition radius rtr ≈ 30 gravitational radii and a fraction of 0.05 − 0.1 of the mass accretion rate goes into the TZ, where the plasma speeds up its outward-oriented motion to reach a Lorentz factor Γ <em>∈</em> [2.5, 5.0] at rtr.


2011 ◽  
Vol 1 (1) ◽  
pp. e4
Author(s):  
Felix F. Brezinski ◽  
Ahmad A. Hujeirat

A general relativistic model for the formation and acceleration of low mass-loaded jets from systems containing accreting black holes is presented. The model is based on previous numerical results and theoretical studies in the Newtonian regime, but modified to include the effects of space-time curvature in the vicinity of the event horizon of a spinning black hole. It is argued that the boundary layer between the Keplerian accretion disk and the event horizon is best suited for the formation and acceleration of the accretion-powered jets in active galactic nuclei and micro-quasars. The model presented here is based on matching the solutions of three different regions: i- a weakly magnetized Keplerian accretion disk in the outer part, where the transport of angular momentum is mediated through the magentorotational instability, ii- a strongly magnetized, advection-dominated and turbulent-free boundary layer (BL) between the outer cold accretion disk and the event horizon and where the plasma rotates sub-Keplerian and iii- a transition zone (TZ) between the BL and the overlying corona, where the electrons and protons are thermally uncoupled, highly dissipative and rotate super-Keplerian. In the BL, the gravitation-driven dynamical collapse of the plasma increases the strength of the poloidal magnetic field (PMF) significantly, subsequently suppressing the generation and dissipation of turbulence and turning off the primary source of heating. In this case, the BL appears much fainter than standard disk models so as if the disk truncates at a certain radius. The action of the PMF in the BL is to initiate torsional Alf`ven waves that transport angular momentum from the embedded plasma vertically into the TZ, where a significant fraction of the shear-generated toroidal magnetic field reconnects, thereby heating the protons up to the virial-temperature. Also, the strong PMF forces the electrons to cool rapidly, giving rise therefore to the formation of a gravitationally unbound two-temperature proton-dominated outflow. Our model predicts the known correlation between the Lorentz-factor and the spin parameter of the BH. It also shows that the effective surface of the BL, through which the baryons flow into the TZ, shrinks with increasing the spin parameter, implying therefore that low mass-loaded jets most likely originate from around Kerr black holes. When applying our model to the jet in the elliptical galaxy M87, we find a spin parameter a ∈ [0.99, 0.998], a transition radius rtr ≈ 30 gravitational radii and a fraction of 0.05 − 0.1 of the mass accretion rate goes into the TZ, where the plasma speeds up its outward-oriented motion to reach a Lorentz factor Γ ∈ [2.5, 5.0] at rtr.


2020 ◽  
Vol 495 (1) ◽  
pp. 614-620
Author(s):  
M Yu Piotrovich ◽  
A G Mikhailov ◽  
S D Buliga ◽  
T M Natsvlishvili

ABSTRACT We estimated the magnetic field strength at the event horizon for a sample of supermassive black holes (SMBHs) in active galactic nuclei (AGNs). Our estimates were made using the values of the inclination angles of the accretion disc to the line of sight, which we obtained previously from spectropolarimetric observations in the visible spectrum. We also used published values of full width at half-maximum of spectral line Hβ from broad-line region, masses of SMBHs, and luminosity of AGNs at 5100 $\mathring{\rm A}$. In addition, we used the literature data on the spins of SMBHs obtained from their X-ray spectra. Our estimates showed that the magnetic field strength at the event horizon of the majority of SMBHs in AGNs range from several to tens of kG and have mean values of about 104 G. At the same time, for individual objects, the fields are significantly larger – of the order of hundreds kG or even 1 MG.


2004 ◽  
Vol 22 (8) ◽  
pp. 3039-3054 ◽  
Author(s):  
B. Lavraud ◽  
T. D. Phan ◽  
M. W. Dunlop ◽  
M. G. G. G. T. Taylor ◽  
P. J. Cargill ◽  
...  

Abstract. We report on the observation of three high-altitude cusp crossings by the Cluster spacecraft under steady northward IMF conditions. The focus of this study is on the exterior cusp and its boundaries. At the poleward edge of the cusp, large downward jets are present; they are characterized by a dawn-dusk component of the convection velocity opposite to the IMF By direction and a gradual evolution (velocity filter effect) corresponding to an injection site located at the high-latitude magnetopause tailward of the cusp, with subsequent sunward convection. As one moves from the poleward edge into the exterior cusp proper, the plasma gradually becomes stagnant as the result of the mirroring and scattering of the aforementioned plasma flows. The existence of such a stagnant region (Stagnant Exterior Cusp: SEC) is found in all events studied here even when the IMF By is large and the clock angle is ~90°. The SEC-magnetosheath boundary appears as a spatial structure that has a normal component of the magnetic field pointing inward, in accordance with a probable connection between the region and the magnetosheath (with northward field). This boundary generally has a deHoffmann-Teller velocity that is slow and oriented sunward and downward, compatible with a discontinuity propagating from a location near the high-latitude magnetopause. Although the tangential stress balance is not always satisfied, the SEC-magnetosheath boundary is possibly a rotational discontinuity. Just outside this boundary, there exists a clear sub-Alfvénic plasma depletion layer (PDL). These results are all consistent with the existence of a nearly steady reconnection site at the high-latitude magnetopause tailward of the cusp. We suggest that the stability of the external discontinuity (and of the whole region) is maintained by the presence of the sub-Alfvénic PDL. However, examination of the electron data shows the presence of heated electrons propagating parallel to the magnetic field (upward) just outside of the SEC-magnetosheath boundary. This appears inconsistent with their source being the northern lobe reconnection site. Finally, the definition of the magnetopause at high latitudes is revisited. To define the SEC-magnetosheath boundary as the magnetopause would lead to the misnaming of the "exterior cusp".


10.4081/706 ◽  
2011 ◽  
Vol 1 (1) ◽  
pp. e4
Author(s):  
Felix F. Brezinski ◽  
Ahmad A. Hujeirat

A general relativistic model for the formation and acceleration of low mass-loaded jets from systems containing accreting black holes is presented. The model is based on previous numerical results and theoretical studies in the Newtonian regime, but modified to include the effects of space-time curvature in the vicinity of the event horizon of a spinning black hole. It is argued that the boundary layer between the Keplerian accretion disk and the event horizon is best suited for the formation and acceleration of the accretion-powered jets in active galactic nuclei and micro-quasars. The model presented here is based on matching the solutions of three different regions: i- a weakly magnetized Keplerian accretion disk in the outer part, where the transport of angular momentum is mediated through the magentorotational instability, ii- a strongly magnetized, advection-dominated and turbulent-free boundary layer (BL) between the outer cold accretion disk and the event horizon and where the plasma rotates sub-Keplerian and iii- a transition zone (TZ) between the BL and the overlying corona, where the electrons and protons are thermally uncoupled, highly dissipative and rotate super-Keplerian. In the BL, the gravitation-driven dynamical collapse of the plasma increases the strength of the poloidal magnetic field (PMF) significantly, subsequently suppressing the generation and dissipation of turbulence and turning off the primary source of heating. In this case, the BL appears much fainter than standard disk models so as if the disk truncates at a certain radius. The action of the PMF in the BL is to initiate torsional Alf`ven waves that transport angular momentum from the embedded plasma vertically into the TZ, where a significant fraction of the shear-generated toroidal magnetic field reconnects, thereby heating the protons up to the virial-temperature. Also, the strong PMF forces the electrons to cool rapidly, giving rise therefore to the formation of a gravitationally unbound two-temperature proton-dominated outflow. Our model predicts the known correlation between the Lorentz-factor and the spin parameter of the BH. It also shows that the effective surface of the BL, through which the baryons flow into the TZ, shrinks with increasing the spin parameter, implying therefore that low mass-loaded jets most likely originate from around Kerr black holes. When applying our model to the jet in the elliptical galaxy M87, we find a spin parameter a ∈ [0.99, 0.998], a transition radius rtr ≈ 30 gravitational radii and a fraction of 0.05 − 0.1 of the mass accretion rate goes into the TZ, where the plasma speeds up its outward-oriented motion to reach a Lorentz factor Γ ∈ [2.5, 5.0] at rtr.


Moreana ◽  
2003 ◽  
Vol 40 (Number 153- (1-2) ◽  
pp. 219-239
Author(s):  
Anne Lake Prescott

Thomas More is often called a “humanist,” and rightly so if the word has its usual meaning in scholarship on the Renaissance. “Humanist” has by now acquired so many different and contradictory meanings, however, that it needs to be applied carefully to the likes of More. Many postmodernists tend to use the word, pejoratively, to mean someone who believes in an autonomous self, the stability of words, reason, and the possibility of determinable meanings. Without quite arguing that More was a postmodernist avant la lettre, this essay suggests that he was not a “humanist” who stalks the pages of much recent postmodernist theory and that in fact even while remaining a devout Catholic and sensible lawyer he was quite as aware as any recent critic of the slipperiness of human selves and human language. It is time that literary critics tightened up their definition of “humanist,” especially when writing about the Renaissance.


Author(s):  
K Gwirtz ◽  
M Morzfeld ◽  
A Fournier ◽  
G Hulot

Summary We study predictions of reversals of Earth’s axial magnetic dipole field that are based solely on the dipole’s intensity. The prediction strategy is, roughly, that once the dipole intensity drops below a threshold, then the field will continue to decrease and a reversal (or a major excursion) will occur. We first present a rigorous definition of an intensity threshold-based prediction strategy and then describe a mathematical and numerical framework to investigate its validity and robustness in view of the data being limited. We apply threshold-based predictions to a hierarchy of numerical models, ranging from simple scalar models to 3D geodynamos. We find that the skill of threshold-based predictions varies across the model hierarchy. The differences in skill can be explained by differences in how reversals occur: if the field decreases towards a reversal slowly (in a sense made precise in this paper), the skill is high, and if the field decreases quickly, the skill is low. Such a property could be used as an additional criterion to identify which models qualify as Earth-like. Applying threshold-based predictions to Virtual Axial Dipole Moment (VADM) paleomagnetic reconstructions (PADM2M and Sint-2000) covering the last two million years, reveals a moderate skill of threshold-based predictions for Earth’s dynamo. Besides all of their limitations, threshold-based predictions suggests that no reversal is to be expected within the next 10 kyr. Most importantly, however, we show that considering an intensity threshold for identifying upcoming reversals is intrinsically limited by the dynamic behavior of Earth’s magnetic field.


Author(s):  
Katharina Diehl ◽  
Tatiana Görig ◽  
Charlotte Jansen ◽  
Maike Carola Hruby ◽  
Annette B. Pfahlberg ◽  
...  

Pharmacists and pharmaceutical technicians play an important role in counselling customers regarding sunscreen use and sun protection measures. A potentially helpful tool that can be used during counselling is the ultraviolet index (UVI), which informs individuals when and what sun protection measures are needed at a specific place and time. Our aim in this qualitative study was to explore awareness, knowledge, and use of the UVI during counselling in pharmacies. We used semi-structured interviews with pharmacists and pharmaceutical technicians (n = 20) to answer our research questions. Interviews were audiotaped, transcribed verbatim, and analyzed using qualitative content analysis. During the interviews pharmacists and pharmaceutical technicians revealed a lot of uncertainty and lack of knowledge regarding the UVI. Eight professionals were able to give a correct definition of UVI. Amongst others, the UVI was confused with sun protection factor. Overall, the UVI was hardly used during the counselling of customers. The UVI was developed to provide guidance when which type of sun protection is required to avoid detrimental effects of ultraviolet radiation. For effective implementation, both the general population and health professionals (e.g., pharmacists) have to increase their knowledge about the UVI. This would strengthen its use during professional counselling in pharmacies and may help to reduce the incidence of skin cancer over the long term.


Author(s):  
Josep Miquel Bauça ◽  
Andrea Caballero ◽  
Carolina Gómez ◽  
Débora Martínez-Espartosa ◽  
Isabel García del Pino ◽  
...  

AbstractObjectivesThe stability of the analytes most commonly used in routine clinical practice has been the subject of intensive research, with varying and even conflicting results. Such is the case of alanine aminotransferase (ALT). The purpose of this study was to determine the stability of serum ALT according to different variables.MethodsA multicentric study was conducted in eight laboratories using serum samples with known initial catalytic concentrations of ALT within four different ranges, namely: <50 U/L (<0.83 μkat/L), 50–200 U/L (0.83–3.33 μkat/L), 200–400 U/L (3.33–6.67 μkat/L) and >400 U/L (>6.67 μkat/L). Samples were stored for seven days at two different temperatures using four experimental models and four laboratory analytical platforms. The respective stability equations were calculated by linear regression. A multivariate model was used to assess the influence of different variables.ResultsCatalytic concentrations of ALT decreased gradually over time. Temperature (−4%/day at room temperature vs. −1%/day under refrigeration) and the analytical platform had a significant impact, with Architect (Abbott) showing the greatest instability. Initial catalytic concentrations of ALT only had a slight impact on stability, whereas the experimental model had no impact at all.ConclusionsThe constant decrease in serum ALT is reduced when refrigerated. Scarcely studied variables were found to have a significant impact on ALT stability. This observation, added to a considerable inter-individual variability, makes larger studies necessary for the definition of stability equations.


Sign in / Sign up

Export Citation Format

Share Document