scholarly journals Flexible Smart Material With Excellent Energy Harvesting

Author(s):  
Nabil Chakhchaoui ◽  
Rida Farhan ◽  
Yu-Ming Chu ◽  
Umair Khan ◽  
Adil Eddiai ◽  
...  

The field of power harvesting has experienced significant growth over the past few years due to the ever-increasing desire to produce portable and wireless electronics with extended lifespans. The present work aims to introduce an approach to harvesting electrical energy from a mechanically excited piezoelectric element and investigates a power analytical model generated by a smart structure of type polyvinylidene fluoride(PVDF) that can be stuck onto fabrics and flexible substrates, although we report the effects of various substrates and investigates the sticking of these substrates on the characterization of the piezoelectric material.

2018 ◽  
Vol 53 (24) ◽  
pp. 3349-3361 ◽  
Author(s):  
Nabil Chakhchaoui ◽  
H Jaouani ◽  
H Ennamiri ◽  
A Eddiai ◽  
A Hajjaji ◽  
...  

In the last few years, a lot of research focused on increasing of smart textiles products such as woven and knitted structures, which are able to show significant change in their mechanical properties (such as shape and stiffness), in a practical way in response to the stimuli. In this paper, we investigate the potential of a flexible piezoelectric film stuck onto three woven textile matrices: cotton, polyester/cotton, and Kermel, for harvesting mechanical energy from the textile and converting it into electrical energy. At first, a brief introduction of energy harvesting using the piezoelectric material and smart textile is presented. Furthermore, a basic model showing the operation of polyvinylidene fluoride with 33 mode is established. The second part is focused on standard approach model of energy harvesting based on resistive load and freestanding piezo-polymer for the examination of the performance of 33-mode polyvinylidene fluoride energy harvester and the prediction of harvested energy quantity. A power analytical model generated by a smart structure type polyvinylidene fluoride that can be stuck onto fabrics and flexible substrates is investigated. On the other hand, the effects of various substrates and the sticking of these substrates on the piezoelectric material are reported. Additionally, the output power density of this theoretical model of woven textile matrices could reach a value that was seven times higher than freestanding piezo-polymer. Three types of the substrates have been compared as function of excitation frequency and the compressive applied force.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2171
Author(s):  
Hyeonsu Han ◽  
Junghyuk Ko

Along with the increase in renewable energy, research on energy harvesting combined with piezoelectric energy is being conducted. However, it is difficult to predict the power generation of combined harvesting because there is no data on the power generation by a single piezoelectric material. Before predicting the corresponding power generation and efficiency, it is necessary to quantify the power generation by a single piezoelectric material alone. In this study, the generated power is measured based on three parameters (size of the piezoelectric ceramic, depth of compression, and speed of compression) that contribute to the deformation of a single PZT (Lead zirconate titanate)-based piezoelectric element. The generated power was analyzed by comparing with the corresponding parameters. The analysis results are as follows: (i) considering the difference between the size of the piezoelectric ceramic and the generated power, 20 mm was the most efficient piezoelectric ceramic size, (ii) considering the case of piezoelectric ceramics sized 14 mm, the generated power continued to increase with the increase in the compression depth of the piezoelectric ceramic, and (iii) For piezoelectric ceramics of all diameters, the longer the depth of deformation, the shorter the frequency, and depending on the depth of deformation, there is a specific frequency at which the charging power is maximum. Based on the findings of this study, PZT-based elements can be applied to cases that receive indirect force, including vibration energy and wave energy. In addition, the power generation of a PZT-based element can be predicted, and efficient conditions can be set for maximum power generation.


Author(s):  
Lee Wells ◽  
Yirong Lin ◽  
Henry Sodano ◽  
Byeng Youn

The continual advances in wireless technology and low power electronics have allowed the deployment of small remote sensor networks. However, current portable and wireless devices must be designed to include electrochemical batteries as the power source. The use of batteries can be troublesome due to their limited lifespan, thus necessitating their periodic replacement. Furthermore, the growth of battery technology has remained relatively stagnant over the past decade while the performance of computing systems has grown steadily, which leads to increased power usage from the electronics. In the case of wireless sensors that are to be placed in remote locations, the sensor must be easily accessible or of disposable nature to allow the device to function over extended periods of time. For this reason the primary question becomes how to provide power to each node. This issue has spawned the rapid growth of the energy harvesting field. Energy scavenging devices are designed to capture the ambient energy surrounding the electronics and convert it into usable electrical energy. The concept of power harvesting works towards developing self-powered devices that do not require replaceable power supplies. However, when designing a vibration based energy harvesting system the maximum energy generation occurs when the resonant frequency of the system is tuned to the input. This poses certain issues for their practical application because structural systems rarely vibrate at a signal frequency. Therefore, this effort will investigate the optimal geometric design of two dimensional energy harvesting systems for maximized bandwidth. Topology and shape optimization will be used to identify the optimal geometry and experiments will be performed to characterize the energy harvesting improvement when subjected to random vibrations.


Author(s):  
Sugato Hajra ◽  
Yumi Oh ◽  
Manisha Sahu ◽  
Kyungtaek Lee ◽  
Hang-Gyeom Kim ◽  
...  

The piezoelectric nanogenerator (PENG) depends upon the piezoelectric material for the conversion of mechanical stress into useful electrical energy. Development of piezoelectric material compositions starting from ceramic oxides, polymer, and...


Author(s):  
Zheqi Lin ◽  
Hae Chang Gea ◽  
Shutian Liu

Converting ambient vibration energy into electrical energy using piezoelectric energy harvester has attracted much interest in the past decades. In this paper, topology optimization is applied to design the optimal layout of the piezoelectric energy harvesting devices. The objective function is defined as to maximize the energy harvesting performance over a range of ambient vibration frequencies. Pseudo excitation method (PEM) is applied to analyze structural stationary random responses. Sensitivity analysis is derived by the adjoint method. Numerical examples are presented to demonstrate the validity of the proposed approach.


Author(s):  
Amir Panahi ◽  
Alireza Hassanzadeh ◽  
Ali Moulavi ◽  
Ata Golparvar

This study presents a novel piezoelectric beam structure for acoustic energy harvesting. The beams have been designed to maximize output energy in areas where the noise level is loud such as highway traffic. The beam consists of two layers (copper and polyvinylidene fluoride) that convert the ambient noise’s vibration energy to electrical energy. The piezoelectric material’s optimum placement have been studied, and its best positon is obtained on the substrate for the maximum yield. Unlike previous studies, which the entire beam substrate used to be covered by a material, this study presents a modest material usage and contributes to lowering the harvester’s final production cost. Additionally, in this study, an electrical model was developed for the sensor and a read-out circuitry was proposed for the converter. Moreover, the sensor was validated at different noise levels at various lengths and locations. The simulations were performed in COMSOL Multiphysics® and MATLAB® and report a maximum sound pressure of 140 dB from 100 dB point sources in an enclosed air-filled cubic meter chamber.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6759
Author(s):  
Ernesto A. Elvira-Hernández ◽  
Jorge Romero-García ◽  
Antonio Ledezma-Pérez ◽  
Agustín L. Herrera-May ◽  
Ernesto Hernández-Hernández ◽  
...  

Industry 4.0 and the Internet of Things have significantly increased the use of sensors and electronic products based on flexible substrates, which require electrical energy for their performance. This electrical energy can be supplied by piezoelectric vibrational energy harvesting (pVEH) devices. These devices can convert energy from ambient mechanical excitations into electrical energy. In order to develop, these devices require piezoelectric films fabricated with a simple and low-cost process. In this work, we synthesize ZnO nanorod film by a solvothermal method and deposit by spraying on ITO (indium-tin-oxide)/PET (polyethylene terephthalate) flexible substrate for a pVEH microdevice. The results of the characterization of the ZnO nanorod film using X-ray diffraction (XRD) confirm the typical reflections for this type of nanomaterial (JCPDS 36-145). Based on transmission electron microscopy (TEM) images, the size of the nanorod film is close to 1380 nm, and the average diameter is 221 ± 67 nm. In addition, the morphological characteristics of the ZnO nanorod film are obtained using atomic force microscopy (AFM) tapping images. The pVEH microdevice has a resonant frequency of 37 Hz, a generated voltage and electrical power of 9.12 V and 6.67 μW, respectively, considering a load resistance of 107.7 kΩ and acceleration of 1.5 g. The ZnO nanorod film may be applied to pVEH microdevices with flexible substrates using a low-cost and easy fabrication process.


2021 ◽  
pp. 095745652110307
Author(s):  
Avadhut T Patil ◽  
Maruti B Mandale

This review article summarises the mechanism of the acoustic energy harvester or converter which includes the compact structure of the piezoelectric element, electromagnetic transducer and Helmholtz resonator; different shapes of Helmholtz resonators, piezoelectric cantilever, acoustic metamaterial-based approach, electrostatic transduction method, auxetic structure of material and other techniques. The recently established methods of acoustic energy harvesting and converting mechanisms; devices are carefully reviewed, and their results are compared and listed in the table. The technique of energy conversion by using acoustic metamaterial will tend to be more efficacious due to its complexity and the structure. Even in the few noise attenuation applications, more metamaterial is used, where, with the help of the conversion mechanism, the noise or sound energy can be converted into electrical energy for small electronic applications. It is demonstrated that the acoustic energy-conversion technique will become an essential part of the environmental energy harvesting research field.


Author(s):  
Nathan S. Hosking ◽  
Zahra Sotoudeh

In this paper, we study fully coupled electromagnetic-elastic behaviors present in the structures of smart beams using variational asymptotic beam sections and geometrically exact fully intrinsic beam equations. We present results for energy harvesting from smart beams under various oscillatory loads in both the axial and transverse directions and calculate the corresponding deformations. The magnitude of these loads are varied to show the generalized trends produced by piezoelectric materials. Smart materials change mechanical energy to electrical energy; therefore, changing the structural dynamic behavior of the structure and its stiffness matrix. A smart structure can be designed to undergo larger loads without changing the surface area of the cross-section.


Sign in / Sign up

Export Citation Format

Share Document