scholarly journals Sphingolipids and Cell Signaling: Relationship Between Health and Disease in the Central Nervous System

Author(s):  
Andrés Felipe Leal ◽  
Diego A. Suarez ◽  
Olga Yaneth Echeverri-Peña ◽  
Sonia Luz Albarracín ◽  
Carlos Javier Alméciga-Díaz ◽  
...  

Sphingolipids are lipids derived from an 18-carbons unsaturated amino alcohol, the sphingosine. Ceramide, sphingomyelins, sphingosine-1-phosphates, gangliosides and globosides, are part of this group of lipids that participate in important cellular roles such as structural part of plasmatic and organelle membranes maintaining their function and integrity, cell signaling response, cell growth, cell cycle, cell death, inflammation, cell migration and differentiation, autophagy, angiogenesis, immune system. The metabolism of these lipids involves a broad and complex network of reactions that convert one lipid into others through different specialized enzymes. Impairment of sphingolipids metabolism has been associated with several disorders, from several lysosomal storage diseases, known as sphingolipidoses, to polygenic diseases such as diabetes and Parkinson and Alzheimer diseases. Sphingolipids are mainly located in central nervous system, and their abundance and distribution depend on brain development state and cell type. Although several studies have expanded the knowledge about sphingolipids function both in health and disease, it is still necessary to continue their study to understand the cellular implications of novel sphingolipids. These studies will also contribute to the diagnosis and treatment of diseases in which these molecules are part of their pathophysiology. In this review, we summarize the main sphingolipid characteristics and current knowledge about the synthesis, catabolism, regulatory pathways, participation in action potential and ionic channels, among other relevant functions.

Author(s):  
Catherine Meyer-Schwesinger

AbstractThe lysosome represents an important regulatory platform within numerous vesicle trafficking pathways including the endocytic, phagocytic, and autophagic pathways. Its ability to fuse with endosomes, phagosomes, and autophagosomes enables the lysosome to break down a wide range of both endogenous and exogenous cargo, including macromolecules, certain pathogens, and old or damaged organelles. Due to its center position in an intricate network of trafficking events, the lysosome has emerged as a central signaling node for sensing and orchestrating the cells metabolism and immune response, for inter-organelle and inter-cellular signaling and in membrane repair. This review highlights the current knowledge of general lysosome function and discusses these findings in their implication for renal glomerular cell types in health and disease including the involvement of glomerular cells in lysosomal storage diseases and the role of lysosomes in nongenetic glomerular injuries.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Edward H. Schuchman ◽  
Maria D. Ledesma ◽  
Calogera M. Simonaro

AbstractOver the past three decades the lysosomal storage diseases have served as model for rare disease treatment development. While these efforts have led to considerable success, important challenges remain. For example, no treatments are currently approved for nearly two thirds of all lysosomal diseases, and there is limited impact of the existing drugs on the central nervous system. In addition, the costs of these therapies are extremely high, in part due to the fact that drug development has focused on a “single hit” approach – i.e., one drug for one disease. To overcome these obstacles researchers have begun to focus on defining common disease mechanisms in the lysosomal diseases, particularly in the central nervous system, with the hope of identifying drugs that might be used in several lysosomal diseases rather than an individual disease. With this concept in mind, herein we review a new potential treatment approach for the lysosomal storage diseases that focuses on modulation of the endocannabinoid system. We provide a short introduction to lysosomal storage diseases and the endocannabinoid system, followed by a brief review of data supporting this concept.


2015 ◽  
Vol 9s2 ◽  
pp. JEN.S25475 ◽  
Author(s):  
Rob U. Onyenwoke ◽  
Jay E. Brenman

Autophagy is a complex pathway regulated by numerous signaling events that recycles macromolecules and can be perturbed in lysosomal storage diseases (LSDs). The concept of LSDs, which are characterized by aberrant, excessive storage of cellular material in lysosomes, developed following the discovery of an enzyme deficiency as the cause of Pompe disease in 1963. Great strides have since been made in better understanding the biology of LSDs. Defective lysosomal storage typically occurs in many cell types, but the nervous system, including the central nervous system and peripheral nervous system, is particularly vulnerable to LSDs, being affected in two-thirds of LSDs. This review provides a summary of some of the better characterized LSDs and the pathways affected in these disorders.


Author(s):  
Cristiana Pistono ◽  
Nea Bister ◽  
Iveta Stanová ◽  
Tarja Malm

Glial cells are crucial for the maintenance of correct neuronal functionality in a physiological state and intervene to restore the equilibrium when environmental or pathological conditions challenge central nervous system homeostasis. The communication between glial cells and neurons is essential and extracellular vesicles (EVs) take part in this function by transporting a plethora of molecules with the capacity to influence the function of the recipient cells. EVs, including exosomes and microvesicles, are a heterogeneous group of biogenetically distinct double membrane-enclosed vesicles. Once released from the cell, these two types of vesicles are difficult to discern, thus we will call them with the general term of EVs. This review is focused on the EVs secreted by astrocytes, oligodendrocytes and microglia, aiming to shed light on their influence on neurons and on the overall homeostasis of the central nervous system functions. We collect evidence on neuroprotective and homeostatic effects of glial EVs, including neuronal plasticity. On the other hand, current knowledge of the detrimental effects of the EVs in pathological conditions is addressed. Finally, we propose directions for future studies and we evaluate the potential of EVs as a therapeutic treatment for neurological disorders.


Sign in / Sign up

Export Citation Format

Share Document