scholarly journals The Tardigrade Damage Suppressor Protein Promotes Transcription Factor Activation and Expression of DNA Repair Genes in Human Cells in Response to Hydroxyl Radicals and UV-C Exposure

Author(s):  
Claudia Ricci ◽  
Giulia Riolo ◽  
Carlotta Marzocchi ◽  
Jlenia Brunetti ◽  
Alessandro Pini ◽  
...  

The Ramazzottius varieornatus tardigrade is an extremotolerant terrestrial invertebrate belonging to the phylum of Tardigrada. At a length of 0.1-1.0 mm, tardigrades are small animals with an exceptional tolerance to extreme conditions such as high pressure, chemicals and irradia-tion. These properties have been attributed to the recently-discovered Dsup protein. Dsup is a nucleosome-binding protein that prevents DNA damage against X-ray and oxidative stress without impairing cell life, also in Dsup-transfected animal and plant cells. However, the precise “protective” role of this protein is still under study. We performed experiments on human cells and shows that, as compared to control cells, Dsup+ cells are more resistant to UV-C exposure and H2O2. Real-time PCR identified different expression patterns of endogenous genes involved in apoptosis, cell survival and DNA damage repair in Dsup+ cells in response to H2O2 and UV-C. While H2O2 treatment in Dsup+ cells only marginally involved the activation of pathways responsible for DNA repair reinforcing the idea of a direct protective effect of the protein on DNA, in UV-C exposed cells, Dsup efficiently upregulates DNA damage repair genes. In conclusion, our data may help to delineate the different mechanisms by which the Dsup protein operates in response to different insults.

Biology ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 970
Author(s):  
Claudia Ricci ◽  
Giulia Riolo ◽  
Carlotta Marzocchi ◽  
Jlenia Brunetti ◽  
Alessandro Pini ◽  
...  

The Ramazzottius varieornatus tardigrade is an extremotolerant terrestrial invertebrate with a length of 0.1–1.0 mm. These small animals show an extraordinary tolerance to extreme conditions such as high pressure, irradiation, chemicals and dehydration. These abilities are linked to a recently discovered damage suppressor protein (Dsup). Dsup is a nucleosome-binding protein that avoids DNA damage after X-ray and oxidative stress exposure without impairing cell life in Dsup-transfected animal and plant cells. The exact “protective” role of this protein is still under study. In human cells, we confirmed that Dsup confers resistance to UV-C and H2O2 exposure compared to untransfected cells. A different transcription factor activation was also observed. In addition, a different expression of endogenous genes involved in apoptosis, cell survival and DNA repair was found in Dsup+ cells after H2O2 and UV-C. In UV-C exposed cells, Dsup efficiently upregulates DNA damage repair genes, while H2O2 treatment only marginally involves the activation of pathways responsible for DNA repair in Dsup+ cells. These data are in agreement with the idea of a direct protective effect of the protein on DNA after oxidative stress. In conclusion, our data may help to outline the different mechanisms by which the Dsup protein works in response to different insults.


2007 ◽  
Vol 35 (9) ◽  
pp. 2913-2923 ◽  
Author(s):  
Kazunari Hashiguchi ◽  
Yoshihiro Matsumoto ◽  
Akira Yasui

2021 ◽  
Vol 22 (18) ◽  
pp. 9958
Author(s):  
Jianxiang Zhang ◽  
Cheng Xu ◽  
Kangwei Liu ◽  
Yaoqinq Li ◽  
Mengna Wang ◽  
...  

Under extreme environmental conditions such as ultraviolet and ionizing radiation, plants may suffer DNA damage. If these damages are not repaired accurately and rapidly, they may lead to chromosomal abnormalities or even cell death. Therefore, organisms have evolved various DNA repair mechanisms to cope with DNA damage which include gene transcription and post-translational regulation. MicroRNA (miRNA) is a type of non-coding single-stranded RNA molecule encoded by endogenous genes. They can promote DNA damage repair by regulating target gene transcription. Here, roots from seedlings of the japonica rice cultivar ‘Yandao 8’ that were treated with bleomycin were collected for transcriptome-level sequencing, using non-treated roots as controls. A total of 14,716,232 and 17,369,981 reads mapping to miRNAs were identified in bleomycin-treated and control groups, respectively, including 513 known and 72 novel miRNAs. Compared with the control group, 150 miRNAs showed differential expression levels. Target predictions of these differentially expressed miRNAs yielded 8731 potential gene targets. KEGG annotation and a gene ontology analysis indicated that the highest-ranked target genes were classified into metabolic processes, RNA degradation, DNA repair, and so on. Notably, the DNA repair process was significantly enriched in both analyses. Among these differentially expressed miRNAs, 58 miRNAs and 41 corresponding potential target genes were predicted to be related to DNA repair. RT-qPCR results confirmed that the expression patterns of 20 selected miRNAs were similar to those from the sequencing results, whereas four miRNAs gave opposite results. The opposing expression patterns of several miRNAs with regards to their target genes relating to the DNA repair process were also validated by RT-qPCR. These findings provide valuable information for further functional studies of miRNA involvement in DNA damage repair in rice.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 2-2
Author(s):  
Grace Egan ◽  
Geethu Emily Thomas ◽  
Parasvi Patel ◽  
Rose Hurren ◽  
Neil MacLean ◽  
...  

While most patients with AML achieve remission with standard induction chemotherapy, the majority ultimately relapse. Relapsed AML is due, at least in part, to the persistence of chemoresistant leukemia stem cells (LSCs). The mechanisms of chemoresistance in LSCs are not fully understood. Here, we explored DNA damage repair in LSCs. 8227 cells are low passage primary AML cells that maintain a hierarchical organization with functionally defined stem cells in the CD34+CD38- fraction. We FACS sorted 8227 cells into stem and bulk fractions and measured expression of DNA repair genes. LSCs were primed for DNA repair with increased expression of genes associated with homologous recombination (RAD51, XRCC2, XRCC3) and non-homologous end joining (XRCC4, XRCC5, PRKDC). Next, we treated the cell fractions with daunorubicin, an intercalating anthracycline that causes double stranded breaks. DNA damage and repair were evaluated by measuring foci of 53BP1, RAD51 and γH2AX by fluorescent microscopy and quantified using image J. Compared to bulk cells, 8227 stem cells demonstrated enhanced DNA damage repair with increased foci of 53BP1 and RAD51 and decreased γH2AX foci, compared to their basal levels. Similar findings were noted after exposing the stem and bulk cells to radiation. We recently discovered that the metabolic enzyme hexokinase 2 (HK2) localizes to the nucleus to maintain stem cell number and function. Therefore, we selectively over-expressed HK2 in the nucleus of 8227 and NB4 cells by tagging HK2 with a nuclear localizing sequence (PAAKRVKLD). We confirmed selective over-expression of HK2 in the nucleus by immunoblotting and confocal microscopy. Over-expressing HK2 increased stem cell function as shown by clonogenic growth assays and engraftment into mouse marrow. We then treated these cells with daunorubicin and measured DNA damage repair. Over-expression of nuclear HK2 increased 53BP1 and RAD51 foci with decreased γH2AX foci, similar to the phenotype observed in LSCs. In addition, over-expression of nuclear HK2 conferred resistance to daunorubicin as measured by clonogenic growth assays. In summary, LSCs appear to be primed for DNA repair with increased levels of DNA damage repair genes. After exposure to chemotherapy and radiation, LSCs have increased repair of double strand DNA breaks compared to more differentiated blasts. This accelerated DNA damage repair may partly explain the increased chemoresistance seen in LSCs. Disclosures Schimmer: Takeda:Honoraria, Research Funding;Novartis:Honoraria;Jazz:Honoraria;AbbVie Pharmaceuticals:Other: owns stock ;Otsuka:Honoraria;Medivir AB:Research Funding.


2021 ◽  
Vol 16 (3) ◽  
pp. S534-S535
Author(s):  
Z. Yu ◽  
S. Dang ◽  
J. Zhang ◽  
J. Duan ◽  
S. Chen ◽  
...  

2019 ◽  
Vol 316 (3) ◽  
pp. C299-C311 ◽  
Author(s):  
Jing Luo ◽  
Zhong-Zhou Si ◽  
Ting Li ◽  
Jie-Qun Li ◽  
Zhong-Qiang Zhang ◽  
...  

Hepatocellular carcinoma (HCC) is known for its high mortality rate worldwide. Based on intensive studies, microRNA (miRNA) expression functions in tumor suppression. Therefore, we aimed to evaluate the contribution of miR-146a-5p to radiosensitivity in HCC through the activation of the DNA damage repair pathway by binding to replication protein A3 (RPA3). First, the limma package of R was performed to differentially analyze HCC expression chip, and regulative miRNA of RPA3 was predicted. Expression of miR-146a-5p, RPA3, and DNA damage repair pathway-related factors in tissues and cells was determined. The effects of radiotherapy on the expression of miR-146a-5p and RPA3 as well as on cell radiosensitivity, proliferation, cell cycle, and apoptosis were also assessed. The results showed that there exists a close correlation between miR-146a and the radiotherapy effect on HCC progression through regulation of RPA3 and the DNA repair pathway. The positive rate of ATM, pCHK2, and Rad51 in HCC tissues was higher when compared with that of the paracancerous tissues. SMMC-7721 and HepG2 cell proliferation were significantly inhibited following 8 Gy 6Mv dose. MiR-146a-5p restrained the expression of RPA3 and promoted the expression of relative genes associated with the DNA repair pathway. In addition, miR-146a-5p overexpression suppresses cell proliferation and enhances radiosensitivity and cell apoptosis in HCC cells. In conclusion, the present study revealed that miR-146a-5p could lead to the restriction of proliferation and the promotion of radiosensitivity and apoptosis in HCC cells through activation of DNA repair pathway and inhibition of RPA3.


2015 ◽  
Vol 7 ◽  
pp. e2015046 ◽  
Author(s):  
Sudhansu Sekhar Nishank

Background– Defect in DNA damage repair genes due to oxidative stress predispose the humans to malignancies. There are many cases of association of malignancies with sickle cell disease patients (SCD) throughout the world, the molecular cause of which has never been investigated. DNA damage repair genes such as  hOGG1, XRCC1 and p53 play significant role in repair of DNA damage during oxidative stress but the distribution and clinical effect of these genes are not known till date in SCD patients who are associated with oxidative stress related clinical complications.        Objective – The aim of the study was to characterize the distribution and clinical effect of DNA damage gene polymorphisms p53 (codon 72 Arg> Pro), hOGG1 (codon 326 Ser>Cyst) and XRCC1 (codons 194 Arg>Trp, codon 280 Arg> His, codon 399 Arg> Gln) among SCD patients of  central India. Methods- A case control study of  250 SCD patients and 250 normal individuals were investigated by PCR-RFLP techniques.     Result- The prevalence of mutant alleles of hOGG1 gene, XRCC1 codon 280 Arg>His  were found to be significantly high among SCD patients as compared to controls. However, SCD patients did not show clinical association with any of these DNA repair gene polymorphisms.  Conclusion- This indicates that hOGG1, p53  and XRCC1 gene polymorphisms  may not have any clinical impact among SCD patients in India.


2019 ◽  
Vol 20 (19) ◽  
pp. 4728 ◽  
Author(s):  
Hwani Ryu ◽  
Hyun-Kyung Choi ◽  
Hyo Jeong Kim ◽  
Ah-Young Kim ◽  
Jie-Young Song ◽  
...  

Class III receptor tyrosine kinase (RTK) inhibitors targeting mainly FLT3 or c-KIT have not been well studied in lung cancer. To identify a small molecule potentially targeting class III RTK, we synthesized novel small molecule compounds and identified 5-(4-bromophenyl)-N-(naphthalen-1-yl) oxazol-2-amine (AIU2001) as a novel class III RKT inhibitor. In an in vitro kinase profiling assay, AIU2001 inhibited the activities of FLT3, mutated FLT3, FLT4, and c-KIT of class III RTK, and the proliferation of NSCLC cells in vitro and in vivo. AIU2001 induced DNA damage, reactive oxygen species (ROS) generation, and cell cycle arrest in the G2/M phase. Furthermore, AIU2001 suppressed the DNA damage repair genes, resulting in the ‘BRCAness’/‘DNA-PKness’ phenotype. The mRNA expression level of STAT5 was downregulated by AIU2001 treatment and knockdown of STAT5 inhibited the DNA repair genes. Our results show that compared to either drug alone, the combination of AIU2001 with a poly (ADP-ribose) polymerase (PARP) inhibitor olaparib or irradiation showed synergistic efficacy in H1299 and A549 cells. Hence, our findings demonstrate that AIU2001 is a candidate therapeutic agent for NSCLC and combination therapies with AIU2001 and a PARP inhibitor or radiotherapy may be used to increase the therapeutic efficacy of AIU2001 due to inhibition of DNA damage repair.


Author(s):  
Annemarie E. M. Post ◽  
Johan Bussink ◽  
Fred C. G. J. Sweep ◽  
Paul N. Span

Tamoxifen-induced radioresistance, reported in vitro, might pose a problem for patients who receive neoadjuvant tamoxifen treatment and subsequently receive radiotherapy after surgery. Previous studies suggested that DNA damage repair or cell cycle genes are involved, and could therefore be targeted to preclude the occurrence of cross-resistance. We aimed to characterize the observed cross-resistance by investigating gene expression of DNA damage repair genes and cell cycle genes in estrogen receptor-positive MCF-7 breast cancer cells that were cultured to tamoxifen resistance. RNA sequencing was performed, and expression of genes characteristic for several DNA damage repair pathways was investigated, as well as expression of genes involved in different phases of the cell cycle. The association of differentially expressed genes with outcome after radiotherapy was assessed in silico in a large breast cancer cohort. None of the DNA damage repair pathways showed differential gene expression in tamoxifen-resistant cells compared to wild-type cells. Two DNA damage repair genes were more than two times upregulated (NEIL1 and EME2), and three DNA damage repair genes were more than two times downregulated (PCNA, BRIP1, and BARD1). However, these were not associated with outcome after radiotherapy in the TCGA breast cancer cohort. Genes involved in G1, G1/S, G2, and G2/M phases were lower expressed in tamoxifen-resistant cells compared to wild-type cells. Individual genes that were more than two times upregulated (MAPK13) or downregulated (E2F2, CKS2, GINS2, PCNA, MCM5, and EIF5A2) were not associated with response to radiotherapy in the patient cohort investigated. We assessed the expression of DNA damage repair genes and cell cycle genes in tamoxifen-resistant breast cancer cells. Though several genes in both pathways were differentially expressed, these could not explain the cross-resistance for irradiation in these cells, since no association to response to radiotherapy in the TCGA breast cancer cohort was found.


Sign in / Sign up

Export Citation Format

Share Document