scholarly journals Estimation of the Compressive Strength of Corrugated Board Boxes with Shifted Creases on the Flaps

Author(s):  
Damian Mrówczyński ◽  
Tomasz Garbowski ◽  
Anna Knitter-Piątkowska

In the modern world, all manufacturers strive for the optimal design of their products. This general trend is recently also observed in the corrugated board packaging industry. Colorful prints on displays, perforations in shelf-ready-packaging and various types of ventilation holes in trays, although extremely important for ergonomic or functional reasons, weaken the strength of the box. To meet the requirements of customers and recipients, packaging manufacturers outdo each other in new ideas for the construction of their products. Often the aesthetic qualities of the product become more important than the attention to maintaining the standards of the load capacity of the packaging (which, apart from their attention-grabbing functions, are also intended to protect transported products). The particular flaps design (both top and bottom) and their influence on the strength of the box is investigated in this study. The updated analytical-numerical approach is used here to predict the strength of the packaging with various flap’s offsets. Experimental results indicated a significant decrease in the static load-bearing capacity of packaging in the case of shifted flap creases. The simulation model proposed in our previous work has been modified and updated to take into account also this effect. The results obtained by the model presented in the paper are in satisfactory agreement with the experimental data.

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5181
Author(s):  
Damian Mrówczyński ◽  
Tomasz Garbowski ◽  
Anna Knitter-Piątkowska

In the modern world, all manufacturers strive for the optimal design of their products. This general trend is recently also observed in the corrugated board packaging industry. Colorful prints on displays, perforations in shelf-ready-packaging and various types of ventilation holes in trays, although extremely important for ergonomic or functional reasons, weaken the strength of the box. To meet the requirements of customers and recipients, packaging manufacturers outdo each other with new ideas for the construction of their products. Often the aesthetic qualities of the product become more important than the attention to maintaining the standards of the load capacity of the packaging (which, apart from their attention-grabbing functions, are also intended to protect transported products). A particular flaps design (both top and bottom) and its influence on the strength of the box are investigated in this study. An updated analytical–numerical approach is used here to predict the strength of packaging with various flap offsets. Experimental results indicated a significant decrease in the static load-bearing capacity of packaging in the case of shifted flap creases. The simulation model proposed in our previous work has been modified and updated to take into account this effect. The results obtained by the model presented in this paper are in satisfactory agreement with the experimental data.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3786
Author(s):  
Tomasz Garbowski ◽  
Anna Knitter-Piątkowska ◽  
Damian Mrówczyński

The corrugated board packaging industry is increasingly using advanced numerical tools to design and estimate the load capacity of its products. This is why numerical analyses are becoming a common standard in this branch of manufacturing. Such trends cause either the use of advanced computational models that take into account the full 3D geometry of the flat and wavy layers of corrugated board, or the use of homogenization techniques to simplify the numerical model. The article presents theoretical considerations that extend the numerical homogenization technique already presented in our previous work. The proposed here homogenization procedure also takes into account the creasing and/or perforation of corrugated board (i.e., processes that undoubtedly weaken the stiffness and strength of the corrugated board locally). However, it is not always easy to estimate how exactly these processes affect the bending or torsional stiffness. What is known for sure is that the degradation of stiffness depends, among other things, on the type of cut, its shape, the depth of creasing as well as their position or direction in relation to the corrugation direction. The method proposed here can be successfully applied to model smeared degradation in a finite element or to define degraded interface stiffnesses on a crease line or a perforation line.


Author(s):  
Tomasz Garbowski ◽  
Anna Knitter-Piątkowska ◽  
Damian Mrówczyński

The corrugated board packaging industry is increasingly using advanced numerical tools to design and estimate the load capacity of its products. That is why numerical analyzes are becoming a common standard in this branch of manufacturing. Such trend causes either the use of advanced computational models that take into account the full 3D geometry of the flat and wavy layers of corrugated board, or the use of homogenization techniques to simplify the numerical model. The article presents theoretical considerations that extend the numerical homogenization technique already presented in our previous work. The proposed here homogenization procedure also takes into account the creasing and / or perforation of corrugated board, i.e. processes that undoubtedly weaken the stiffness and strength of the corrugated board locally. However, it is not always easy to estimate how exactly these processes affect the bending or torsional stiffness. What is known for sure is that the degradation of stiffness depends, among other things, on the type of cut, its shape, the depth of creasing, as well as their position or direction in relation to the corrugation direction. The method proposed here can be successfully applied to model smeared degradation in a finite element or to define degraded interface stiffnesses on a crease line or a perforation line.


2022 ◽  
pp. 136943322110572
Author(s):  
Xun Chong ◽  
Pu Huo ◽  
Linlin Xie ◽  
Qing Jiang ◽  
Linbing Hou ◽  
...  

A new connection measure between the precast concrete (PC) cladding panel and PC frame structure is proposed to realize a new kind of isostatic frame-cladding system. Three full-scale PC wall-frame substructures were tested under the quasi-static load. These substructures included a bare wall-frame specimen, a specimen with a cladding panel that has no opening, and a specimen with a cladding panel that has an opening in it. The damage evolution, failure mode, load-bearing capacity, deformation capacity, and energy dissipation capacity of three specimens were compared. The results indicated that the motions of the cladding panels and the main structures were uncoupled through the relative clearance of the bottom connections, and three specimens exhibited approximately identical failure modes and seismic performance. Thus, the reliability of this new isostatic system was validated.


2013 ◽  
Vol 9 (1) ◽  
pp. 20-28

The restrictions in availability of forest-based raw materials along with favourable environmental policies towards alternative sources of raw materials have forced corrugated packaging industry to shift towards recycled paper and other fibre sources such as non-wood and agro-residues. The variability in raw pulp materials with increasing percentages of recycled fibres is a very common technical problem for the corrugated packaging industry worldwide. Corrugating packaging production is facing the challenge to ensure a satisfactory strength of packages despite the increase of recycled paper as the main fibrous component. Sustainable manufacturing of papers of consistent and acceptable quality requests comprehensive characterization of the fibrous components, which are becoming more heterogeneous. Understanding the influence that heterogeneous recycled raw materials have on packaging grade paper properties offers great potential value to the corrugated board and packaging industry. 57 linerboards and corrugating medium were selected to represent all the variety of paper grades available on the market at the moment for the production of corrugated board in Spain. The papers were analyzed for their fibre morphology (fibre length, fibre width, lumen diameter, cell wall width and flexibility) and fibre composition (softwood to hardwood and nonwood fibre count and weight) and their strength (compression, bursting and crushing resistance) was evaluated. All the determinations were in accordance with the relevant TAPPI Test Methods. The significant differences found in most of the anatomical characteristics, fibre composition and strength properties among the paper grades reflected the diverse raw materials used for their production as well as their qualitative differences. By means of simple correlation the influence of fibre characteristics and composition on the strength of the papers was determined under two different conditions, at 23 oC and 50% RH and at 20 oC and 90% RH. The results demonstrate that besides the physical-mechanical characterization of packaging grade papers, fibre anatomy and composition can be used successfully as a complementary practical test to predict the performance of papers. The application of the predicting correlations is proposed for the evaluation of the fibre supplies for the packaging industry. An enormous potential for cost reduction can be created by the selection of the most appropriate and inexpensive combination of grade papers for a specific packaging use.


2018 ◽  
Vol 196 ◽  
pp. 01046
Author(s):  
Aniela Glinicka ◽  
Michał Maciąg

The paper presents the analysis of the load-bearing capacity of thin-walled steel bars such as beam-column. It was assumed that the rods are subject to uniformly distributed surface corrosion in the atmosphere over their entire length. As a result of corrosion, the mass loss of these rods, i.e. the thickness of the cross-sectional walls of the rod are evenly reduced. Therefore, the dependence of the critical force - the eccentricity changes. The theory of stability of thin-walled bars was used to calculate the load capacity of the rod. To calculate changes in the load capacity of the rod, an interactive relationship was used that combines compression with bending. A calculation example of the load capacity of an eccentrically compressed rod with a “C” section which has been corroded has been presented.


1942 ◽  
Vol 71 (2) ◽  
pp. 228-258
Author(s):  
R. D Anderson

If you have had your attention directed to the novelties in thought in your own lifetime, you will have observed that almost all really new ideas have a certain aspect of foolishness when they are first produced. Prof. A. N. Whitehead, Science and the Modern World.1. Quantum Mechanics is a portentous name; the alternative—Wave Mechanics—is almost as bad. The mathematics are formidable, the literature large and growing rapidly, and the subjectmatter dealt with is the behaviour of physical things, such as electrons, protons, atoms, and so on. Why, then, should actuaries as such take any interest in the subject?


1970 ◽  
Vol 92 (1) ◽  
pp. 113-117 ◽  
Author(s):  
W. D. Anderson ◽  
C. L. Dellinger

The Basic Oxygen Furnace comprises a tiltable vessel supported by two trunnions in large roller bearings. To accommodate thermal expansion, the floating bearing is mounted on a deep curved beam which moves axially on two linear bearings. Under loads of 1 to 2 million pounds, the elastic deflection of this beam alters the static load capacity of the roller bearing. This paper describes a computer assisted analysis based on Castigliano’s First Theorem for determining the effective bearing capacity, and secondly for optimizing the beam design.


Sign in / Sign up

Export Citation Format

Share Document