scholarly journals Energy Performance Simulation in Buildings Composed of Natural and Organic Materials Within the Moroccan Rural Areas of the Atlas Mountains

Author(s):  
Hanane Es-sebyty ◽  
Bouchra Abbi ◽  
Elena Ferretti ◽  
Mohammed Igouzal

The construction field uses up over one-third of the global energy consumption and contribute to 40% of CO2 emissions according to the International Energy Agency (IEA) and the 2020 annual reporter of United Nation, Goal 11 (Make cities inclusive, safe, resilient and sustainable) which discusses sustainable, safe and efficient buildings. Therefore, Morocco has a commitment to this program by publishing the law 47-09 of energy efficiency. This work aims to study the energy efficiency of two types of building, a conventional and a natural building. Conventional building is constructed using concrete, while the natural one uses sand clay and straws. As for the technique of making the natural building, it perpetually follows the same approach accustomed in rural zones of Atlas Mountains in Morocco. In this research we also simulate, temperature and humidity variation inside these buildings using TRNSYS software. Sketch Up software was employed to design these houses. The weather database is used for a typical meteorological year (TMY). In the case of natural building, many building configurations were simulated: roof insulation, floor insulation, different types of glazing and sun protection. What's more, the thermal comfort is revealed to be more conspicuous in the case of natural building.

Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5840
Author(s):  
Bat-Erdene Bayandelger ◽  
Yuzuru Ueda ◽  
Amarbayar Adiyabat

There are approximately 200,000 households living in detached houses and gers (yurts) with small coal stoves that burn raw coal in Ulaanbaatar city. A proper heating system and improvement of the energy efficiency of residential dwellings are vitally important for Ulaanbaatar city to reduce air pollution as well as for the operation of the current central energy system. This study shows the experimental results for two gers with two different heating systems and different thermal insulation, for investigating the merits of each. The technical feasibility of the system consisting of an electric thermal storage (ETS) heater with a daytime charging schedule and areal photovoltaic (PV) system was also examined by using a simulation with software developed in MATLAB (R2020a, MathWorks, USA). As a result of the experiment, the indoor comfort level and energy efficiency of the ger with added insulation and an ETS heater with nighttime charging were shown to be enhanced compared with those of the reference ger. The ger with added insulation and the ETS heater consumed 3169 kWh for electric appliances and 5989 kWh for the heating season. The simulation showed that the PV self-consumption rate is 76% for the Ger 2 with the ETS heater because of the daytime charging schedule of the ETS heater. The PV system supplied 31% of the total energy consumed, with the remaining 69% from the main grid.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8382
Author(s):  
Alberto-Jesus Perea-Moreno ◽  
Quetzalcoatl Hernandez-Escobedo

According to United Nations data, half of the world’s population lives in cities and forecasts indicate that by the middle of the 21st century, this percentage will have increased to 65%. The increase in the urban population favors the creation of a network of interactions that entails a series of material and energy flows. These cause environmental impacts that affect the quality of life of citizens and the environment as a whole. According to data from the International Energy Agency, cities occupy 3% of the planet’s surface and are responsible for 67% of global energy consumption. The effects caused by this consumption, as well as its impact on the depletion of resources, make it necessary to carry out an exhaustive study of renewable energies and new energy saving systems. This Special Issue aims to present new advances and developments in renewable energy and energy saving systems that allow cities to evolve in a sustainable way.


Urban Science ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 82
Author(s):  
Maria Rosaria Guarini ◽  
Francesco Sica ◽  
Pierluigi Morano ◽  
Josè Antonio Vadalà

The International Energy Agency (2019) states 40% of CO2 emissions in cities are linked to the buildings stock, in particular to heating and cooling systems, material types and users’ performance. According to Green New Deal, the energy transition of buildings is becoming a priority. This is via investments with low environmental impacts through renewable energy sources. The paper describes an integrated economic-energy-environmental framework (IE3F), i.e., an economic evaluation protocol for new constructions and/or existing renewal projects aimed at supporting the choice phase between alternative technological solutions based on biocompatible materials. The IE3F borrows the logical-operative flow of the life cycle assessment multi-criteria approach. The value aspects translated into monetary terms that characterize the project life cycle are taken into account. The protocol was tested on an emergency project in Italy, namely in Messina City. The results obtained provide evidence of the versatile use of IE3F and its practical utility to guide economic convenience judgements on building investments and choice problems between alternatives in sustainable perspective. The research deepening will be about keeping track of multiple performance levels of the construction, not only the energy performance, and attempting to estimate the corresponding economic value in terms of increase/decrease of construction cost value.


2017 ◽  
Vol 26 (2) ◽  
pp. 44
Author(s):  
Enrique Saavedra ◽  
Francisco J. Rey ◽  
Jaime Luyo

El incremento de los precios de la energía eléctrica, las preocupaciones sobre el cambio climático, la independencia y seguridad energética impulsan el cambio del mercado mundial de la iluminación hacia fuentes de luz energéticamente más eficientes. La iluminación, según estimaciones de la International Energy Agency (IEA), representa casi el 20% del consumo mundial de energía eléctrica. En el Perú, según el Ministerio de Energía y Minas, aproximadamente el 35% de la energía primaria (después de la transformación y/o descontadas las pérdidas) es destinada a la generación eléctrica, la cual presenta consumos importantes en iluminación: Sector Residencial 15% a 30%, sector Comercial aprox. 33%, sector Público aprox. 24% y sector industrial 10% a 15%. Dados estos niveles importantes de consumo en sistemas de iluminación, el uso transversal en todos los sectores, la falta de un marco político regulatorio integral, así como la necesidad de determinar y establecer alternativas de eficiencia energética, es necesario el conocimiento de la situación actual y las perspectivas de los sistemas de iluminación. Para lograr el ahorro de energía en iluminación, la IEA recomienda a los gobiernos: Eliminación progresiva de productos de iluminación ineficientes; adoptar iluminación de calidad, fiabilidad y Estándares Mínimos de Eficiencia Energética (MEPS); apoyar el desarrollo, uso y actualización de las normas internacionales de pruebas y los protocolos de medición para reducir los costos de cumplimiento de la industria y apoyar los requerimientos de política nacional; exigir y promover un mejor diseño y gestión de sistemas de iluminación al asegurar que los códigos de construcción promuevan el uso de la luz natural e incluyan MEPS para sistemas de iluminación, incluya información y formación dirigidas a arquitectos, constructores, propietarios y gestores. Actualmente el mercado está dominado por las tecnologías de iluminación convencionales, las cuales están siendo desplazadas por la tecnología de Iluminación de Estado Sólido (SSL). A nivel mundial, la SSL que comprende LED, OLED y la gestión de los sistemas de iluminación, marcan la tendencia con grandes probabilidades de lograr los objetivos de ahorro y eficiencia energética. La SSL ofrece controlabilidad mejorada, nuevos factores de forma (que facilitan el reemplazo de tecnologías convencionales) y nuevas funcionalidades (base de la industria de la iluminación inteligente) que se pueden integrar con sistemas de sensores y de control, lo que permite mayor ahorro de energía. No obstante, la existencia de tecnologías de mayor eficiencia y características lumínicas, existen barreras para su adopción, principalmente: falta de información y sensibilidad, falta de confianza, mayor costo inicial, incentivos inadecuados, temores percibidos relacionados a la salud y el ambiente. Así mismo, hay una serie de barreras para la adopción de productos SSL, estos comprenden principalmente costos iniciales, confiabilidad, estabilidad de color y compatibilidad; que pueden limitar la adopción. Palabras clave.-Sistema de iluminación, Eficiencia energética, Gestión energética, Lámpara, LED. ABSTRACTRising electricity prices, concerns about climate change, independence and energy security drive the shift from the global lighting market to more energy-efficient light sources. Lighting, according to estimates by the International Energy Agency (IEA), accounts for almost 20% of the world's electricity consumption. In Peru, according to the Ministry of Energy and Mines, approximately 35% of primary energy (after processing and / or discounting losses) is destined to electricity generation, which presents important consumption in lighting: Residential Sector 15 % to 30%, Commercial sector approx. 33%, Public sector approx. 24% and industrial sector 10% to 15%. Given these important levels of consumption in lighting systems, transverse use in all sectors, the lack of a comprehensive regulatory policy framework, as well as the need to determine and establish energy efficiency alternatives, it is necessary to know the current situation and The prospects of lighting systems. o achieve energy savings in lighting, the IEA recommends to governments: Progressive elimination of inefficient lighting products; Adopt quality lighting, reliability and minimum Energy Efficiency Standards (MEPS); Support the development, use and updating of international testing standards and measurement protocols to reduce compliance costs and support national policy requirements; Demand and promote better design and management of lighting systems by ensuring that building codes promote the use of natural light and include MEPS for lighting systems, including information and training for architects, builders, owners and managers. Currently the market is dominated by conventional lighting technologies, which are being displaced by Solid State Lighting (SSL) technology. Worldwide, SSL comprising LED, OLED and the management of lighting systems, mark the trend with great probability to achieve the goals of energy saving and efficiency. The SSL offers improved controllability, new form factors (which facilitate the replacement of conventional technologies) and new functionalities (base of the intelligent lighting industry) that can be integrated with sensor and control systems, allowing greater savings of Energy. However, the existence of more efficient technologies and light characteristics, there are barriers to its adoption, mainly: lack of information and sensitivity, lack of confidence, greater initial cost, inadequate incentives, perceived fears related to health and the environment. Also, there are a number of barriers to adoption of SSL products, these mainly include initial costs, reliability, color stability and compatibility; Which may limit adoption. Keywords.-Lighting system, Energy efficiency, Energy management, Lamp, LED


Author(s):  
D. Derevyanko ◽  
A. Kolodiazhna ◽  
Y. Nуtsun

The work is devoted to the analysis of the peculiarities of determining the economic indicators of the feasibility of implementing measures to improve energy efficiency. In contrast to energy saving, which aims to reduce the consumption of energy resources, energy efficiency is a matter of appropriate energy consumption. That is, the use of less energy for the same level of supply of buildings or industries. The topic is relevant, because now energy prices are rising every year. At the same time, the International Energy Agency estimates an increase in total resource needs by 25% by 2040.  To achieve this goal, standard measures aimed at improving the energy efficiency of buildings, the effects of the implementation of these measures, a number of economic indicators, including PP, ARR, NPV, PI, BCR, SIR, MARR, IRR and DPP, were analyzed, evaluated and grouped. The focus was on the dynamic group of indicators due to the fact that their calculation involves the use of a discounting procedure. The general scheme of all dynamic indicators is the same and is based on forecasting costs and revenues for the planning period. The indicators of this group take into account changes in the value of money over time, which is neglected by the indicators of the static group. The most popular indicators are the calculation of net present value (NPV) and the definition of profitability index (PI). This work can be used to solve the problem of low energy efficiency and insufficient funding for the modernization of the building


2020 ◽  
Author(s):  
Yi Huang ◽  
Yufan Xiao ◽  
Fan Yu

Abstract Background: The existing heritage buildings are considered as symbols of the original spirit of a city, which also contains vitality and resilience through centuries. In Qingdao, the Liyuan courtyard styles are still existed as a very regional and representative colonial residential architecture form in the urban development history from 1900s in this city. Method: The research here made the hypotheses of the heritage buildings can regain its authentic appearance while achieve energy efficiency in building performance through optimization and renovation strategies. The sustainability potentials assessment is discussed and evaluated with field investigation in a Liyuan building case study by on-site observation and building performance simulation analysis of two renovation options.Result and Discussion: One model with façade supplemented in the insulation layers in the envelope walls and another model with further upgrade with consideration of recycling materials mixed were discussed and estimated with building performance simulation method. Both scenarios improved the energy efficiency, while the advanced model could achieve better result in the building energy behavior dramatically.Conclusion: This research paper verified the hypotheses of sustainability embodied in Liyuan buildings. It also confirmed the vitality and resilience could be regained through history with considerable and reasonable guideline in strategy together with personal alternatives. Technologies innovation helps to improve their energy performance by reducing consumption or self-supplying on the existing buildings renovation actions. Every specific choices of renovation action could achieve low energy goals and impose optional positive effects on the behavior of the living comfort preference. Multicriteria considerations might influence the balanced between different factors when making decisions in the heritage building restoration and it is expected to empower the fresh glory in the development of heritage building protection and restoration.


2020 ◽  
Author(s):  
Kira Ashby ◽  
Sea Rotmann ◽  
Jennifer Smith ◽  
Luis Mundaca ◽  
Aimee Ambrose ◽  
...  

Energy efficiency (EE) program administrators and policy makers have long encouraged the adoption of efficient technologies and conservation practices across all energy users and sectors. Energy users who haven’t yet participated in efficiency and conservation programs despite ongoing outreach are often referred to as “Hard-to-Reach” (HTR). These individuals or organizations can include, for instance, low income or rural audiences on the residential side and small businesses or building operators on the commercial side. More effectively engaging underserved and HTR audiences is key to ensuring everyone benefits equitably from efficiency and conservation interventions. In June 2019, energy efficiency, behavior change and HTR researchers, practitioners, and policy makers from five countries embarked on a 3-year project in partnership with the UserCentred Energy Systems Technology Collaboration Programme (Users TCP) by the International Energy Agency (IEA). The purpose of this effort is to characterize the diverse audience segments commonly referred to as HTR and to uncover the barriers and behavioral opportunities to more effectively engage them. This paper describes the first of these efforts. We have synthesized data from a global survey (N=110) and stakeholder interviews with 40+ energy efficiency experts striving to better understand and engage HTR in their respective countries. This paper provides initial insights from this data into how HTR energy users are defined across the world and which segments have been prioritized globally for focused outreach. The overarching goal is to use a standardized research process to inform and improve how energy efficiency, behavior change, and demand response programs targeting specific HTR audiences are designed, implemented and evaluated.


Buildings ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 103 ◽  
Author(s):  
Manuela Almeida ◽  
Marco Ferreira ◽  
Ricardo Barbosa

The construction sector is facing increasingly strict energy efficiency regulations. Existing buildings have specific technical, functional and economic constraints, which, in fulfilling regulations, could lead to costly and complex renovation procedures and also lead to missed opportunities for improving their energy performance. In this article, the methodology for comparing cost-optimality in building renovations, developed in the International Energy Agency (IEA)–Energy in Buildings and Communities (EBC) Annex 56 project, is extended with a life cycle assessment by including embodied primary energy and carbon emissions in the calculations. The objective is to understand the relevance of embodied energy and carbon emissions in the evaluation of the cost effectiveness of building renovation solutions towards nearly zero energy buildings, as well as the effect of the embodied values in the achievable carbon emissions and primary energy reductions expected in an energy renovation. Results from six case studies, representative of different regions in Europe, suggest that embodied values of energy and carbon emissions have a decreasing effect—ranging from 2 to 32%—on the potential reductions of energy and emissions that can be achieved with renovation measures in buildings. In addition, the consideration of the embodied energy and carbon emissions does not affect the ranking of the renovation packages.


2020 ◽  
Author(s):  
Kira Ashby ◽  
Sea Rotmann ◽  
Jennifer Smith ◽  
Luis Mundaca ◽  
Aimee Ambrose ◽  
...  

Energy efficiency (EE) program administrators and policy makers have long encouraged the adoption of efficient technologies and conservation practices across all energy users and sectors. Energy users who haven’t yet participated in efficiency and conservation programs despite ongoing outreach are often referred to as “Hard-to-Reach” (HTR). These individuals or organizations can include, for instance, low income or rural audiences on the residential side and small businesses or building operators on the commercial side. More effectively engaging underserved and HTR audiences is key to ensuring everyone benefits equitably from efficiency and conservation interventions. In June 2019, energy efficiency, behavior change and HTR researchers, practitioners, and policy makers from five countries embarked on a 3-year project in partnership with the UserCentred Energy Systems Technology Collaboration Programme (Users TCP) by the International Energy Agency (IEA). The purpose of this effort is to characterize the diverse audience segments commonly referred to as HTR and to uncover the barriers and behavioral opportunities to more effectively engage them. This paper describes the first of these efforts. We have synthesized data from a global survey (N=110) and stakeholder interviews with 40+ energy efficiency experts striving to better understand and engage HTR in their respective countries. This paper provides initial insights from this data into how HTR energy users are defined across the world and which segments have been prioritized globally for focused outreach. The overarching goal is to use a standardized research process to inform and improve how energy efficiency, behavior change, and demand response programs targeting specific HTR audiences are designed, implemented and evaluated.


2019 ◽  
Vol 1 (1) ◽  
pp. 33-40
Author(s):  
Ömer Faruk Ulusoy ◽  
Erkan Pektaş

Energy efficiency is a set of measures to prevent the loss of energy in gas, steam, air and electricity, to reduce energy demand by recycling and evaluating various wastes, or to reduce production by advanced technology, more efficient energy resources, advanced industrial processes, and energy recovery.  The International Energy Agency announced that world energy consumption increased by 45% since 1980 and would be 70% higher by 2030 [1]. The energy policy of the future will be on saving, energy efficiency and renewable energy trilogy. Today, with the industrial revolution, the environmental problems and the damages caused by the world we live in today have reached the dimensions that threaten human health and ecological balance. Considering that the energy consumed in the world is in buildings, every measure that reduces energy consumption is very important in terms of improving life conditions. For this purpose, the importance of renewable energy sources in the design of energy architecture principles in energy efficiency and sustainable environments is stated.


Sign in / Sign up

Export Citation Format

Share Document