scholarly journals KAJIAN KUAT TEKAN DAN INFILTRASI PADA BETON NON PASIR (Study Of Compressive Strength And Infiltration Of no-fines Concrete)

2019 ◽  
Vol 2 (2) ◽  
pp. 72
Author(s):  
Edi Kurniadi ◽  
Lava Himawan

<p><em>No fines concrete can be known such as porous concrete, no-fines concrete and pervious concrete, because not use of sand in the mixture causing the cavities between coarse aggregates. When the rainy season, especially in urban areas there are many flood because the water is difficult to infiltration into the ground. Because permeable nature of non-fines concrete which can accelerate the absorption of water to the soil and to the water channel, reduce run-off and increase groundwater reserves. In this research will study for compressive strength and infiltration in non-finnes concrete. This research uses coarse aggregates from the results of stone crushing machines with coarse aggregate sizes (5-10) mm. cement: aggregate ratio used 1: 2; 1: 3; 1: 4; 1: 5; 1: 6; 1: 7; 1: 8. The study began with material checking, planning of material requirements, making non-sand concrete, then testing compressive strength, and infiltration testing at the age of 28 days. The results showed that the compressive strength of non-finnes concrete with a variation of the ratio of cement : gravel 1: 2  is  33.19 MPa while for a mixture of 1: 8 it is 5.23 MPa. The Infiltration rate has increased along with the greater variation in the ratio of the mixture. The maximum infiltration rate for a mixture of 1: 8 is 9.44 mm/sec. The infiltration rates in no-finnes concrete can be used to accelerate the absorption of water into the soil and can function to reduce water on the surface of the yard.</em></p>

Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 556
Author(s):  
Muhammad Faisal Javed ◽  
Afaq Ahmad Durrani ◽  
Sardar Kashif Ur Rehman ◽  
Fahid Aslam ◽  
Hisham Alabduljabbar ◽  
...  

Numerous research studies have been conducted to improve the weak properties of recycled aggregate as a construction material over the last few decades. In two-stage concrete (TSC), coarse aggregates are placed in formwork, and then grout is injected with high pressure to fill up the voids between the coarse aggregates. In this experimental research, TSC was made with 100% recycled coarse aggregate (RCA). Ten percent and twenty percent bagasse ash was used as a fractional substitution of cement along with the RCA. Conventional concrete with 100% natural coarse aggregate (NCA) and 100% RCA was made to determine compressive strength only. Compressive strength reduction in the TSC was 14.36% when 100% RCA was used. Tensile strength in the TSC decreased when 100% RCA was used. The increase in compressive strength was 8.47% when 20% bagasse ash was used compared to the TSC mix that had 100% RCA. The compressive strength of the TSC at 250 °C was also determined to find the reduction in strength at high temperature. Moreover, the compressive and tensile strength of the TSC that had RCA was improved by the addition of bagasse ash.


2008 ◽  
Vol 3 (4) ◽  
pp. 130-137 ◽  
Author(s):  
R Kumutha ◽  
K Vijai

The properties of concrete containing coarse recycled aggregates were investigated. Laboratory trials were conducted to investigate the possibility of using recycled aggregates from the demolition wastes available locally as the replacement of natural coarse aggregates in concrete. A series of tests were carried out to determine the density, compressive strength, split tensile strength, flexural strength and modulus of elasticity of concrete with and without recycled aggregates. The water cement ratio was kept constant for all the mixes. The coarse aggregate in concrete was replaced with 0%, 20%, 40%, 60%, 80% and 100% recycled coarse aggregates. The test results indicated that the replacement of natural coarse aggregates by recycled aggregates up to 40% had little effect on the compressive strength, but higher levels of replacement reduced the compressive strength. A replacement level of 100% causes a reduction of 28% in compressive strength, 36% in split tensile strength and 50% in flexural strength. For strength characteristics, the results showed a gradual decrease in compressive strength, split tensile strength, flexural strength and modulus of elasticity as the percentage of recycled aggregate used in the specimens increased. 100% replacement of natural coarse aggregate by recycled aggregate resulted in 43% savings in the cost of coarse aggregates and 9% savings in the cost of concrete.


2020 ◽  
Vol 6 (12) ◽  
pp. 2416-2424
Author(s):  
Erniati Bachtiar ◽  
Mustaan Mustaan ◽  
Faris Jumawan ◽  
Meldawati Artayani ◽  
Tahang Tahang ◽  
...  

This study aims to examine the effect of recycled Polyethylene Terephthalate (PET) artificial aggregate as a substitute for coarse aggregate on the compressive strength and flexural strength, and the volume weight of the concrete. PET plastic waste is recycled by heating to a boiling point of approximately 300°C. There are five variations of concrete mixtures, defined the percentage of PET artificial aggregate to the total coarse aggregate, by 0, 25, 50, 75 and 100%. Tests carried out on fresh concrete mixtures are slump, bleeding, and segregation tests. Compressive and flexural strength tests proceeded based on ASTM 39/C39M-99 and ASTM C293-79 standards at the age of 28 days. The results showed that the use of PET artificial aggregate could improve the workability of the concrete mixture. The effect of PET artificial aggregate as a substitute for coarse aggregate on the compressive and flexural strength of concrete is considered very significant. The higher the percentage of PET plastic artificial aggregate, the lower the compressive and flexural strength, and the volume weight, of the concrete. Substitution of 25, 50, 75 and 100% of PET artificial aggregate gave decreases in compressive strength of 30.06, 32.39, 41.73 and 44.06% of the compressive strength of the standard concrete (18.20 MPa), respectively. The reductions in flexural strength were by respectively 19.03, 54.50, 53.95 and 61.00% of the standard concrete's flexural strength (3.59 MPa). The reductions in volume weight of concrete were by respectively 8.45, 17.71, 25.07 and 34.60% of the weight of the standard concrete volume of 2335.4 kg/m3 Doi: 10.28991/cej-2020-03091626 Full Text: PDF


2018 ◽  
Vol 4 (12) ◽  
pp. 2971 ◽  
Author(s):  
Saad Tayyab ◽  
Asad Ullah ◽  
Kamal Shah ◽  
Faial Mehmood ◽  
Akhtar Gul

The production and use of plastic bottles is increasing tremendously with passing time. These plastic bottles become a problem when they are disposed as they are non-biodegradable. This means that the waste plastic, when dumped, does not decompose naturally and stays in the environment affecting the ecological system. The use of alternative aggregates like Plastic Coarse Aggregate (PCA) is a natural step in solving part of reduction of natural aggregates as well as to solve the issue discussed above. The researchers are trying from half a century to investigate the alternative materials to be replaced in concrete mixture in place of either aggregate or cement.  In this research, the concrete made from plastic waste as coarse aggregates were investigated for compressive strength and Stress-strain relationship. Plastic coarse aggregate have been replaced in place of natural coarse aggregate by different percentages with w/c 0.5, 0.4 and 0.3. The percentage replacement of plastic aggregate in place of mineral coarse aggregate was 25%, 30%, 35% and 40 %. Using Super-plasticizer Chemrite 520-BAS. OPC-53 grade cement was used. Total of forty five Cylinders were prepared based on different combination of Percentage of Plastic aggregate replaced and W/C as discussed above and checked for compressive strength and stress-strain relationship. The compressive strength increases by about 19.25% due to the decrease in W/C from 0.5 to 0.3 for plastic percentage addition of 40%.


Author(s):  
Samson Olalekan Odeyemi

The need for porous concrete has become increased due its ability to control surface water, increase the rate of recharging groundwater, and reduce pollution of the ecosystem. Granite is a coarse aggregate that is quite expensive when compared with gravel in Nigeria. Therefore, this research is aimed at optimizing blended granite and gravel in the production of porous concrete. Samples of blended granite-gravel porous concrete of varying mix proportions were produced using cement to aggregate mix ratio of 1:4. The samples were tested for their porosity, workability and compressive strengths. The data collected were analyzed with the aid of Design Expert 10.0. It was observed that the optimal combination for the granite-gravel blended porous concrete is 12% granite, 88% gravel, and a water-cement ratio of 0.66%. This combination gave a porous concrete with a compressive strength of 48.4 N/mm2, percentage porosity of 6% and a compacting factor of 0.91. These values when compared to that of the control specimen revealed that the optimal mix gave a porous concrete with higher porosity, higher workability and a better compressive strength.


2018 ◽  
Vol 7 (4.20) ◽  
pp. 395
Author(s):  
Laith Mohammed Ridha Mahmmod Wajde ◽  
S. S. Alyhya Zainab ◽  
M. R. Abdul Rasoul ◽  
Abdulrasool T. Abdulrasool ◽  
. .

Properties of coarse aggregate such as texture have a significant influence on the performance of fresh and hardened concrete. A smooth surface can enhance workability, yet a rougher one offers a stronger bond between aggregate and paste, resulting in higher strength. This research aims to roughen the texture of white smoothed aggregate by using cement-iron filings mortar with the aid of microwave maturation to accelerate the adhesion process of mortar-aggregate surface. The mortar was prepared by mixing an equal weight of cement and iron filings, of a particular size, with sand. Four different periods (2, 4, 6 and 8 mints.)  of microwave treatment in addition to water curing were considered plus one reference mortar which cured in only air for 24 hrs. The treated aggregate was then used for casting concrete specimens with a w/c ratio of 0.5 in which their properties being determined by means of density, compressive and tensile strengths observations. The main findings revealed that the concrete specimens contained microwave treated aggregate attained higher compressive strength compared with those treated in the air. Data also showed that concrete specimens with microwave treated aggregate possess better tensile properties as a consequence of the improvement in the transition zone.   


2018 ◽  
Vol 162 ◽  
pp. 02002
Author(s):  
Ikbal Gorgis ◽  
Whab Faleh Abd ◽  
Shaker Al-Mishhadani

This paper investigates durability of no fine concrete containing demolished concrete as coarse aggregate after crushing to different sizes. Different no fine concrete mixes were considered using Portland cement type I with two types of coarse aggregates, crushed demolished concrete and crushed natural gravel were used with two ratios by weight (1:5 and 1:7) C/Agg. Graded aggregate and single size were used with a maximum size of 20 mm. W /C ratio was kept as 0.4 for all mixes and super-plasticizer was required to keep the same flow and compaction factor value for all mixes. Cube specimens with 150mm were cured and divided to two parts, the first part was exposed to 60 cycles of freezing- thawing; the second part of the sample was immersed in Nitric Acids solution with pH of 3.5 for (7, 28, 90 and 180 days) and then tested for compressive strength. The results indicated that it is possible to produce homogenous and workable mixes by using demolished crushed concrete as coarse aggregate. The compressive strength after cycles of freezing- thawing and immersing in Nitric acid (HNO3) at (7, 28, 90 and 180) days was decreased for samples made with crushed demolished concrete. Also it is found that the performance of concrete mixes containing graded coarse aggregate and 1:5 cement/aggregate ratios was better than other mixes.


Eng ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 153-166
Author(s):  
Lewis Cole ◽  
Ramez Bakheet ◽  
Shatirah Akib

Flooding is one of the climatic change consequences that has become a dangerous threat to many coastal cities. Pervious concrete is considered a solution to decrease rainwater runoff and mitigate flood effects, as it allows water to percolate through the ground and prevent possible damage. Using waste products as aggregates in pervious concrete not only exploits waste materials and makes it valuable but also reduces the amount of this waste ending in the landfill or harming the environment, and it decreases the demand for natural resources. Infiltration rate test and compressive strength tests were conducted to investigate the effect of using waste plastic and/or recycled rubber as concrete coarse aggregates with different ratios (5%, 10%, 15%, 20%, and 25%) on the pervious concrete. The results showed that increasing the waste materials in concrete decreased the compressive strength for all ratios while increased the infiltration rate values.


2019 ◽  
Vol 258 ◽  
pp. 04011
Author(s):  
Atur P. N. Siregar ◽  
Emma L. Pasaribu ◽  
I Wayan Suarnita

Coarse aggregate is the dominant constituent in concrete. Aggregate hardness is a variable needed to investigate in determining its effect on the critical stress intensity factors (KIC), dissipated fracture energy (Gf) and compressive strength (fc’) of the concrete. The hardness of coarse aggregate based on Los Angeles abrasion values of 16.7%., 22.6%, and 23.1% was used incorporated with Portland Composite Cement (PCC), and superplasticizer to create specimens. Cubes of 150x150x150 mm were employed to determine the fc’, and four beam sizes: 50x100x350 mm, 50x150x500 mm, 50x300x950 mm and 50x450x1250 mm were engaged to determine KIC and Gf. The fc’ and Gf of specimens manufactured by three different hardness of coarse aggregates were 45, 43, 40 MPa and 89.4, 54.0, 56.3 N/m respectively. KIC of specimens was 138.9, 119.4 and 114.1 MPa.mm1/2 for beam size of 50x100x350 mm; 148.2, 115.8 and 108.8 MPa.mm1/2 for beam size of 50x150x500 mm; 230.9, 183.1 and 157.9 MPa.mm1/2 for beam size of 50x300x950 mm; and 293.2, 248.1 and 244.3 MPa.mm1/2 for beam size of 50x450x1250 mm. Experimental results showed that decreasing hardness of coarse aggregate was found to have significant effect on the fracture toughness rather than on the compressive strength of concrete.


2016 ◽  
Vol 847 ◽  
pp. 437-444 ◽  
Author(s):  
Ying Liang Tian ◽  
Wen Cai Liu ◽  
Su Ping Cui ◽  
Shi Bing Sun ◽  
Yi Wang ◽  
...  

In recent decades, high-tech electrical equipment has drastically proliferated instead of Cathode Ray Tube (CRT), making CRT funnel glass potential hazardous solid waste. Due to a relatively high level of lead, CRT funnel glass could be used as a potential material for the production of anti-radioactive concrete. In our study the CRT funnel glass , which was separated as aggregate in the concrete, was reduced to 4.75-25 mm (coarse aggregates) and less 4.75 mm (fine aggregates) in the production of anti-radioactive concrete. Mixes containing 0%, 20%, 40% , 60%, 80% and 100% (volume percentage) of CRT funnel glass to replace fine aggregate and coarse aggregate (respectively or simultaneously)) were prepared. The influence of the size, shape and replacement percentage of aggregates on workability, compressive strength and radiation shielding performance were determined. It was found that the replacement of natural aggregate with recycled CRT glass considerably improved the slump and radiation shielding performance but reduced compressive strength. The optimum percentage of waste funnel glass used as fine aggregate and coarse aggregate was 40%. The results clearly showed that the CRT funnel glass performed a significant enhancement in radiation shielding properties.


Sign in / Sign up

Export Citation Format

Share Document