scholarly journals Effect of Surfactants on the Corrosion and Wear Performance of Zinc-Epoxy Powder Composite Coatings

2021 ◽  
pp. ArticleID:210753
Author(s):  
Xian Yang ◽  
2021 ◽  
Vol 7 (3) ◽  
Author(s):  
R. Keshavamurthy ◽  
B. E. Naveena ◽  
C. S. Ramesh ◽  
M. R. Haseebuddin

Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 120
Author(s):  
Zhijie Li ◽  
Fei Ma ◽  
Dongshan Li ◽  
Shanhong Wan ◽  
Gewen Yi ◽  
...  

Ni–Co–P/Si3N4 composite coatings were fabricated over an aluminum–silicon (Al–Si) substrate using a pulse-current electroplating process, in which the rapid deposition of an intermediate nickel–cobalt layer was used to improve coating adhesion. The microstructure, mechanical, and tribological behaviors of the electroplated Ni–Co–P/Si3N4 composite coating were characterized and evaluated. The results revealed that the electroplated Ni–Co–P/Si3N4 composite coating primarily consisted of highly crystalline Ni–Co sosoloid and P, and a volumetric concentration of 7.65% Si3N4. The electroplated Ni–Co–P/Si3N4 composite coating exhibited hardness values almost two times higher than the uncoated Al–Si substrate, which was comparable to hard chrome coatings. Under lubricated and dry sliding conditions, the electroplated Ni–Co–P/Si3N4 composite coating showed excellent anti-wear performance. Whether dry or lubricated with PAO and engine oil, the composite coating showed minimum abrasive wear compared to the severe adhesive wear and abrasive wear observed in the Al–Si substrate.


2012 ◽  
Vol 454 ◽  
pp. 144-147
Author(s):  
Lian Wei Yang ◽  
Jin Hui Li ◽  
Yun Dong ◽  
Xiao Ping Lin

WC/Co; Composite coating; Plasma spraying; Friction and wear Abstract: WC- Co composite powders were synthesized by direct mechanical grinding in a rotary-vibration mill under 8h, and then analyzed by SEM and XRD. WC and WC/Co composite coatings were prepared by supersonic plasma spraying fine WC-Co composite powders. The wear and friction properties of both coatings were evaluated. The results showed that the wear resistance of the WC/Co composite coating was superior to that of the WC coating. The improvement in wear resistance of the WC/Co composite coating was attributed to its higher fracture toughness and adhesion strength as well as better thermal diffusivity. As for the WC/Co composite coating, the mechanism was mainly adhesion with micro-abrasion and fatigued-induced brittle fracture within splats, and the delamination along splat boundaries only occurred at high load. However, the failure of the WC coating was predominantly detachment of transferred film and brittle fracture within the splats and delamination along splat boundaries, which were enhanced with the increasing load.


2015 ◽  
Vol 81 ◽  
pp. 132-139 ◽  
Author(s):  
Sironmani Palraj ◽  
Muthiah Selvaraj ◽  
Kuppaianpoosari Maruthan ◽  
Gopalakrishnan Rajagopal

2016 ◽  
Vol 25 (7) ◽  
pp. 2563-2569 ◽  
Author(s):  
Pradeep Tirlapur ◽  
M. Muniprakash ◽  
Meenu Srivastava

Sign in / Sign up

Export Citation Format

Share Document