Characteristics of Spatter in Micro-Drilling of Metal Sheet by Pulsed Nd:YAG Laser

2016 ◽  
Vol 10 (6) ◽  
pp. 874-881 ◽  
Author(s):  
Yasuhiro Okamoto ◽  
◽  
Hibiki Yamamoto ◽  
Akira Okada ◽  

In laser cutting and drilling process, molten material was scattered as spatter, which deteriorates the surface integrity of a workpiece because of the thermal damage. It is expected that the control of assist gas flow can reduce the adhesion of spatter. In order to investigate the improvement method of thermal damage due to the adhesion of spatter, it is required to clarify characteristics of spatter. Therefore, a method was developed to collect and analyze spatter based on the use of high-speed video cameras in the laser micro-drilling process, and the characteristics of spatter movement were numerically investigated by CFD analysis. The scattering velocity and angle of the spatter were investigated by recognizing and tracking spatter with the high-speed video observation. The movement of spatter was observed by using two high-speed video cameras, and analyzed by using a two-direction tracking method, in which the 3D tracking lines of spatter particles were reconstructed in the forward and backward frames, and the actual trajectory of individual spatter particle was obtained by averaging those tracking lines. These measurements revealed that the initial velocity of spatter was mainly distributed from 52 m/s to 200 m/s with an average velocity of 129 m/s. The initial angle of spatter was mainly distributed between 0 and 30 degrees from the workpiece surface in the upward direction. There was little correlation between the initial velocity and angle of spatter. The diameter of spatter was mainly distributed from 1μm to 4μm with an average diameter of 3.7μm. It is important to use the processing conditions achieving the smaller spatter diameter in order to reduce the thermal damage caused by spatter. Although coaxial assist gas flow has an influence on the spatter behavior, that time period is very short. Therefore, it is important to control the spatter behavior outside of the coaxial assist gas flow by using an additional gas flow to prevent the thermal damage to the workpiece surface.

Proceedings ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 137
Author(s):  
Hirotaka Nakashima ◽  
Gen Horiuchi ◽  
Shinji Sakurai

This study aimed to determine the minimum required initial velocity to hit a fly ball toward the same field (left-field for right-handed batters), center field, and opposite field (right field for right-handed batters). Six baseball players hit fastballs launched by a pitching machine. The movements of the balls before and after bat-to-ball impact were recorded using two high-speed video cameras. The flight distance was determined using a measuring tape. Seventy-nine trials were analyzed, and the minimum required initial velocities of batted balls were quantified to hit balls 60, 70, 80, 90, 100, 110, and 120 m in each direction through regression analysis. As a result, to hit a ball 120 m, initial velocities of 43.0, 43.9, and 46.0 m/s were required for the same field, center field, and opposite field, respectively. The result provides a useful index for batters to hit a fly ball in each of the directions.


2001 ◽  
Vol 17 (1) ◽  
pp. 63-76 ◽  
Author(s):  
LeRoy W. Alaways ◽  
Sean P. Mish ◽  
Mont Hubbard

Pitched-baseball trajectories were measured in three dimensions during competitions at the 1996 Summer Olympic games using two high-speed video cameras and standard DLT techniques. A dynamic model of baseball flight including aerodynamic drag and Magnus lift forces was used to simulate trajectories. This simulation together with the measured trajectory position data constituted the components of an estimation scheme to determine 8 of the 9 release conditions (3 components each of velocity, position, and angular velocity) as well as the mean drag coefficient CD and terminal conditions at home plate. The average pitch loses 5% of its initial velocity during flight. The dependence of estimated drag coefficient on Reynolds number hints at the possibility of the drag crisis occurring in pitched baseballs. Such data may be used to quantify a pitcher’s performance (including fastball speed and amount of curve-ball break) and its improvement or degradation over time. It may also be used to understand the effects of release parameters on baseball trajectories.


2010 ◽  
Vol 447-448 ◽  
pp. 836-840 ◽  
Author(s):  
Eiichi Aoyama ◽  
Toshiki Hirogaki ◽  
Keiji Ogawa ◽  
Satoshi Nojiri ◽  
Yutaka Takeda

A drilling technique using micro-drills of 0.2 mm or less in diameter and a super-high-speed spindle of 160000 rpm or more has been developed for drilling ultra-micro holes in printed wiring boards (PWBs). The drilling process requires higher reliability and quality to maintain the reliability of the electrical connection between circuit layers. On the other hand, higher processing efficiency is also required in PWBs manufacturing. To maintain high productivity, drilling is normally performed using a non-step method, but heat damage called B-RING occurs around the drilled holes with this method. To solve these problems without the loss of processing efficiency, we applied the rapid-feed step-drilling cycle method. We investigated the B-RING for drilling quality and evaluated the drilling time for processing efficiency under various drilling conditions. We found that using a rapid-feed step-drilling cycle with an appropriate number of steps and feed rates ensures a higher level of hole quality and processing efficiency compared with the conventional non-step drilling.


2021 ◽  
Vol 250 ◽  
pp. 01011
Author(s):  
Jorge López-Puente ◽  
Jesús Pernas-Sánchez ◽  
José Alfonso Artero-Guerrero ◽  
David Varas ◽  
Joseba Múgica ◽  
...  

The improvement of engines is one of the ways to diminish the fuel consumption in civil aircrafts, and Open Rotors engines are one of the best promises in order to achieve a sensible efficiency increment. These engines have large composite blades that could, in the event of failure, impact against the fuselage, totally or partially. In this case, composite fragments could behave as impactors. In order to design fuselages for this event and adopt these new engines in the future, it is necessary to understand the impact behaviour of a composite fragment against a deformable structure. To this end, unidirectional and woven composites fragments were impacted at high velocity (up to 150 m/s) against aluminium panels at different impact velocities. The composite fragments were made using AS4/8552 (UD) and AGP-193PW (woven) prepregs manufactured by Hexcel Composites, both using AS4 fibres and 8552 epoxy matrix. High speed video cameras were used to record the impact process and to measure both the impact and the residual velocity and hence the energy absorbed.


2016 ◽  
Vol 139 (4) ◽  
pp. 2204-2204 ◽  
Author(s):  
Bozena Kostek ◽  
Piotr Szczuko ◽  
Jozef Kotus ◽  
Maciej Szczodrak ◽  
Andrzej Czyzewski

2013 ◽  
Vol 2013 (0) ◽  
pp. _J027022-1-_J027022-5
Author(s):  
Yusuke UCHIDA ◽  
Gen LI ◽  
Masashi NAKAMURA ◽  
Hiroto TANAKA ◽  
Hao LIU

Circuit World ◽  
2017 ◽  
Vol 43 (3) ◽  
pp. 89-96 ◽  
Author(s):  
Hongyan Shi ◽  
Xiaoke Lin ◽  
Yun Wang

Purpose The purposes of this paper are to study the characterization of drill bit breakage in printed circuit board (PCB) drilling process based on high-speed video analysis and to provide an important reference for micro drill bit breakage prediction. Design/methodology/approach Based on PCB drilling experiment, the high-speed camera was used to observe the micro drill breakage process and the chip removal process. The variation of chip in the drilling process was studied and one of the key reasons for the drill bit breakage was analysed. Finally, the swing angles’ feature during the breakage process of the micro drill was analysed and researched with the image processing tools of MATLAB. Findings The micro drill was prone to breakage mainly because of the blocked chips. The breakage process of the micro drill can be divided into the stage of stable chips evacuation, the stage of blocked chips and the stage of drill bit breakage. The radians of swing angles were basically in the range of ±0.01 when the drilling possess is normal. But when the radians of swing angles considerably exceeded the range of ±0.01, the micro drill bit may be fractured. Originality/value This paper presented the method to study the characterization of drill bit breakage in the PCB drilling process by using high-speed video analysis technology. Meanwhile, an effective suggestion about monitoring the radians of swing angles to predict the breakage of micro drill bit was also provided.


2008 ◽  
Vol 5 (3) ◽  
pp. 157-164 ◽  
Author(s):  
T. Landgraf ◽  
H. Moballegh ◽  
R. Rojas

We have designed a robotic honeybee to mimic the bee dance communication system. To achieve this goal, a tracking system has been developed to extract real bee dance trajectories recorded with high-speed video cameras. The results have been analysed to find the essential properties required for the prototype robot. Putative signals in the dance communication have been identified from the literature. Several prototypes were built with successive addition of more features or improvement of existing components. Prototypes were tested in a populated beehive results were documented using high-speed camera recordings. A substantial innovation is a visual feedback system that helps the robot to minimise collisions with other bees.


Sign in / Sign up

Export Citation Format

Share Document