Collision Avoidance Algorithm for Collaborative Robotics

2017 ◽  
Vol 11 (3) ◽  
pp. 481-489 ◽  
Author(s):  
Stefano Mauro ◽  
◽  
Stefano Pastorelli ◽  
Leonardo Sabatino Scimmi

The paper discusses a study on a real-time collision avoidance algorithm for collaborative robotics applications. Within the work it is considered that a vision system detects the position of an obstacle and defines an ellipsoid which completely includes it. A similar virtual ellipsoid is considered to include the end effector, and its pose is computed based on the robot configuration. The distance between ellipsoids is input into the collision avoidance algorithm based on the method of artificial potentials. The tuning of the algorithm is described herein, along with an analysis of its performance under different operating conditions. The results of two collision avoidance tests are also presented. For the first test, the end-effector must avoid a fixed obstacle placed along a planned path. For the second test, the obstacle is moving, following a trajectory that intersects that of the end-effector. Finally, the behavior of the algorithm with increasing velocities of the end-effector and obstacle is analyzed.

2021 ◽  
Vol 11 (11) ◽  
pp. 4929
Author(s):  
Andrea Raviola ◽  
Michele Antonacci ◽  
Francesco Marino ◽  
Giovanni Jacazio ◽  
Massimo Sorli ◽  
...  

Electro-Hydraulic Servo-Actuators (EHSAs) are mainly used to command primary flight control surfaces in military and commercial aircraft. Since these devices are crucial for vehicle stability and maneuverability, a correct assessment of their health status is mandatory. Within this framework, a joint research project (HyDiag), held by Politecnico di Torino and Lufthansa Technik AG (LHT), aims to provide a more efficient and reliable procedure to determine the operating conditions of the EHSA. A smart and automatic sequence, able to extract several health features of the Unit Under Test (UUT), has been developed and integrated. The present paper discusses the implementation of a collaborative robot, equipped with a vision system and customized tools, for both health features extraction, and maintenance tasks on unserviceable servo-actuators. The main challenges related to the automation of such complex tasks in a real working environment are highlighted, togetherwith the advantages brought by the proposed approach. The paper also presents the first results of an ongoing experimental campaign. Specifically, it reports the enhancements of the maintenance procedures using collaborative robotics and possible future developments.


Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 564
Author(s):  
Ba-Phuc Huynh ◽  
Shun-Feng Su ◽  
Yong-Lin Kuo

This paper presents a novel architecture of the vision/position hybrid control for a Hexa parallel robot. The 3D vision system is combined with the Proportional-Integral-Derivative (PID) position controller to form a two-level closed-loop controller of the robot. The 3D vision system measures the pose of the end-effector after the PID control. The measurement of the 3D vision system is used as a feedback of the second closed-loop control. The 3D vision system has a simple structure using two fixed symmetric cameras at the top of the robot and four planar colored markers on the surface of the end-effector. The 3D vision system detects and reconstructs the 3D coordinates of colored markers. Based on the distance and coplanarity constraints of the colored markers, the optimization problem is modeled for the real-time adjustment, which is implemented during the operation of the robot to minimize the measurement error of the 3D vision system due to both the initial calibration of the stereo camera and the external noise affecting image processing. The bacterial foraging optimization is appropriately configured to solve the optimization problem. The experiment is performed on a specific Hexa parallel robot to assess the effectiveness and feasibility of the proposed real-time adjustment using the bacterial foraging optimization. The experimental result shows that it has high accuracy and fast computation time although the experiment is conducted on a laptop with an average hardware configuration. An experimental comparison of the performance between the proposed method and another control method is also implemented. The results show the superiority and application potential of the proposed method.


2020 ◽  
Vol 13 (2) ◽  
pp. 126-140
Author(s):  
Jing Gan ◽  
Xiaobin Fan ◽  
Zeng Song ◽  
Mingyue Zhang ◽  
Bin Zhao

Background: The power performance of an electric vehicle is the basic parameter. Traditional test equipment, such as the expensive chassis dynamometer, not only increases the cost of testing but also makes it impossible to measure all the performance parameters of an electric vehicle. Objective: A set of convenient, efficient and sensitive power measurement system for electric vehicles is developed to obtain the real-time power changes of hub-motor vehicles under various operating conditions, and the dynamic performance parameters of hub-motor vehicles are obtained through the system. Methods: Firstly, a set of on-board power test system is developed by using virtual instrument (Lab- VIEW). This test system can obtain the power changes of hub-motor vehicles under various operating conditions in real-time and save data in real-time. Then, the driving resistance of hub-motor vehicles is analyzed, and the power performance of hub-motor vehicles is studied in depth. The power testing system is proposed to test the input power of both ends of the driving motor, and the chassis dynamometer is combined to test so that the output efficiency of the driving motor can be easily obtained without disassembly. Finally, this method is used to carry out the road test and obtain the vehicle dynamic performance parameters. Results: The real-time current, voltage and power, maximum power, acceleration time and maximum speed of the vehicle can be obtained accurately by using the power test system in the real road experiment. Conclusion: The maximum power required by the two motors reaches about 9KW, and it takes about 20 seconds to reach the maximum speed. The total power required to maintain the maximum speed is about 7.8kw, and the maximum speed is 62km/h. In this article, various patents have been discussed.


Author(s):  
Giuseppe Placidi ◽  
Danilo Avola ◽  
Luigi Cinque ◽  
Matteo Polsinelli ◽  
Eleni Theodoridou ◽  
...  

AbstractVirtual Glove (VG) is a low-cost computer vision system that utilizes two orthogonal LEAP motion sensors to provide detailed 4D hand tracking in real–time. VG can find many applications in the field of human-system interaction, such as remote control of machines or tele-rehabilitation. An innovative and efficient data-integration strategy, based on the velocity calculation, for selecting data from one of the LEAPs at each time, is proposed for VG. The position of each joint of the hand model, when obscured to a LEAP, is guessed and tends to flicker. Since VG uses two LEAP sensors, two spatial representations are available each moment for each joint: the method consists of the selection of the one with the lower velocity at each time instant. Choosing the smoother trajectory leads to VG stabilization and precision optimization, reduces occlusions (parts of the hand or handling objects obscuring other hand parts) and/or, when both sensors are seeing the same joint, reduces the number of outliers produced by hardware instabilities. The strategy is experimentally evaluated, in terms of reduction of outliers with respect to a previously used data selection strategy on VG, and results are reported and discussed. In the future, an objective test set has to be imagined, designed, and realized, also with the help of an external precise positioning equipment, to allow also quantitative and objective evaluation of the gain in precision and, maybe, of the intrinsic limitations of the proposed strategy. Moreover, advanced Artificial Intelligence-based (AI-based) real-time data integration strategies, specific for VG, will be designed and tested on the resulting dataset.


2005 ◽  
Vol 56 (8-9) ◽  
pp. 831-842 ◽  
Author(s):  
Monica Carfagni ◽  
Rocco Furferi ◽  
Lapo Governi

Author(s):  
Ziyu Zhang ◽  
Chunyan Wang ◽  
Wanzhong Zhao ◽  
Jian Feng

In order to solve the problems of longitudinal and lateral control coupling, low accuracy and poor real-time of existing control strategy in the process of active collision avoidance, a longitudinal and lateral collision avoidance control strategy of intelligent vehicle based on model predictive control is proposed in this paper. Firstly, the vehicle nonlinear coupling dynamics model is established. Secondly, considering the accuracy and real-time requirements of intelligent vehicle motion control in pedestrian crossing scene, and combining the advantages of centralized control and decentralized control, an integrated unidirectional decoupling compensation motion control strategy is proposed. The proposed strategy uses two pairs of unidirectional decoupling compensation controllers to realize the mutual integration and decoupling in both longitudinal and lateral directions. Compared with centralized control, it simplifies the design of controller, retains the advantages of centralized control, and improves the real-time performance of control. Compared with the decentralized control, it considers the influence of longitudinal and lateral control, retains the advantages of decentralized control, and improves the control accuracy. Finally, the proposed control strategy is simulated and analyzed in six working conditions, and compared with the existing control strategy. The results show that the proposed control strategy is obviously better than the existing control strategy in terms of control accuracy and real-time performance, and can effectively improve vehicle safety and stability.


2021 ◽  
Vol 11 (5) ◽  
pp. 2346
Author(s):  
Alessandro Tringali ◽  
Silvio Cocuzza

The minimization of energy consumption is of the utmost importance in space robotics. For redundant manipulators tracking a desired end-effector trajectory, most of the proposed solutions are based on locally optimal inverse kinematics methods. On the one hand, these methods are suitable for real-time implementation; nevertheless, on the other hand, they often provide solutions quite far from the globally optimal one and, moreover, are prone to singularities. In this paper, a novel inverse kinematics method for redundant manipulators is presented, which overcomes the above mentioned issues and is suitable for real-time implementation. The proposed method is based on the optimization of the kinetic energy integral on a limited subset of future end-effector path points, making the manipulator joints to move in the direction of minimum kinetic energy. The proposed method is tested by simulation of a three degrees of freedom (DOF) planar manipulator in a number of test cases, and its performance is compared to the classical pseudoinverse solution and to a global optimal method. The proposed method outperforms the pseudoinverse-based one and proves to be able to avoid singularities. Furthermore, it provides a solution very close to the global optimal one with a much lower computational time, which is compatible for real-time implementation.


2021 ◽  
Vol 9 (4) ◽  
pp. 405
Author(s):  
Raphael Zaccone

While collisions and groundings still represent the most important source of accidents involving ships, autonomous vessels are a central topic in current research. When dealing with autonomous ships, collision avoidance and compliance with COLREG regulations are major vital points. However, most state-of-the-art literature focuses on offline path optimisation while neglecting many crucial aspects of dealing with real-time applications on vessels. In the framework of the proposed motion-planning, navigation and control architecture, this paper mainly focused on optimal path planning for marine vessels in the perspective of real-time applications. An RRT*-based optimal path-planning algorithm was proposed, and collision avoidance, compliance with COLREG regulations, path feasibility and optimality were discussed in detail. The proposed approach was then implemented and integrated with a guidance and control system. Tests on a high-fidelity simulation platform were carried out to assess the potential benefits brought to autonomous navigation. The tests featured real-time simulation, restricted and open-water navigation and dynamic scenarios with both moving and fixed obstacles.


Sign in / Sign up

Export Citation Format

Share Document