Universal Design Considering Physical Characteristics of Diverse Users

2019 ◽  
Vol 13 (4) ◽  
pp. 517-525
Author(s):  
Masato Inoue ◽  
Wataru Suzuki ◽  
◽  

To achieve a universal design that satisfies diverse user requirements associated with aging and internationalization, designers must make a decision based on diverse user requirements. Designers have generally incorporated average human physical characteristics in their designs. Thus, user limitations are critically important. Traditional design methods often regard engineering and product design as iterative processes based on point values. However, when user information is represented as a point value, the resulting product satisfies only that specific user group and does not necessarily satisfy diverse user groups. This study proposes a universal design method that obtains diversely ranged design solutions for user requirements. The proposed method defines diverse user requirements, design variables, and user characteristics as sets, which range in value. To represent user information accurately, users are classified into numerous groups using classification techniques. Design variables are divided into two types: control and noise. Control factors are designer-controllable variables that are based on design specifications. Noise factors are designer-uncontrollable variables representing user characteristics. To derive a ranged design solution set, designers clarify the relationship between performance and design variables. Ranged solutions satisfying required performance are derived for each group using all relational expressions and ranged variable values. The combinations of divided design variables that cannot satisfy the required performance are eliminated from the design proposal, and the narrowed range of design variables become ranged solutions. The ranged solutions are derived for each group, and the common range of design variables is the ranged solution for all users. This paper chooses the design problem of the strap height of a train as a case study of the proposed universal design method. In this case study, we consider diverse user requirements based on the variability of physical characteristics. This paper discusses the suitability of our proposed approach for obtaining ranged solutions that reflect the physical characteristics of diverse users.

1996 ◽  
Vol 118 (4) ◽  
pp. 478-485 ◽  
Author(s):  
Wei Chen ◽  
J. K. Allen ◽  
Kwok-Leung Tsui ◽  
F. Mistree

In this paper, we introduce a small variation to current approaches broadly called Taguchi Robust Design Methods. In these methods, there are two broad categories of problems associated with simultaneously minimizing performance variations and bringing the mean on target, namely, Type I—minimizing variations in performance caused by variations in noise factors (uncontrollable parameters). Type II—minimizing variations in performance caused by variations in control factors (design variables). In this paper, we introduce a variation to the existing approaches to solve both types of problems. This variation embodies the integration of the Response Surface Methodology (RSM) with the compromise Decision Support Problem (DSP). Our approach is especially useful for design problems where there are no closed-form solutions and system performance is computationally expensive to evaluate. The design of a solar powered irrigation system is used as an example.


Author(s):  
Kazuhiro Izui ◽  
Kiyoshi Yokota ◽  
Takayuki Yamada ◽  
Shinji Nishiwaki ◽  
Masataka Yoshimura

This paper proposes a structural optimization-based method for the design of compliant mechanism scissors in which the proposed design criteria are based on universal design principles. The first design criterion is the distance from the hand-grip to the center of gravity of the scissors, which should be minimized to reduce the physical effort required of the people using the device. The second design criterion is that of failure tolerance, where the effects of traction applied in undesirable directions upon the performance of the compliant mechanism should be minimized. Based on the proposed design criteria, a multiobjective optimization problem for the universal design of a compliant mechanism scissors is formulated. Furthermore, to obtain an optimal configuration, a new type of topology optimization technique using the level set function to represent structural boundaries is employed. This optimization technique enables rapid verification of resulting design configurations since the boundary shapes of the obtained design solution candidates can be easily converted to finite element models which are then used in large deformation analyses. Finally, the proposed design method is applied to design examples. The optimal configurations obtained by the proposed method provide good universal design performance, indicating the effectiveness and usefulness of the proposed method.


Author(s):  
Daniel Hulse ◽  
Christopher Hoyle ◽  
Irem Y. Tumer ◽  
Kai Goebel

Abstract Due to the expansive, time-consuming nature of risk analyses, it is important to be able to assign the minimization of risk (and, in general, optimization of resilience) to responsible teams that can work in parallel. However, while methods exist for minimization of risk in conventional design processes, research has not yet shown how it should be performed in a model-based design context in early design phase, when the design representation is relatively high-level and there are uncertainties in parameter values. This paper presents a value-driven design approach to minimize risk by decomposing the design, operational, and expected failure costs to individual functions in a system failure model. This process is demonstrated in a case study considering the redundancy of components to fulfill overall functions in an electric power system, where it is shown to increase design value significantly. An uncertainty-based process is additionally provided to enable the designer to test the sensitivity of the chosen design solution to uncertain parameter values. In this limited case study it is shown that the sensitivity of the choice to parameter value uncertainty is low, provided the range of uncertainty for each parameter is within a reasonable range. In situations like this, presented expected cost metrics provide meaningful information to justify system-architectural design decisions made on the basis of resilience.


2010 ◽  
Vol 156-157 ◽  
pp. 392-395
Author(s):  
Md Raihanuzzaman Rumman ◽  
Soon Jik Hong

Maintaining good surface quality usually involves additional manufacturing cost or loss of productivity. The Taguchi design is an efficient and effective experimental method in which a response variable can be optimized, given various control and noise factors, using fewer resources than a factorial design. This study included feed rate, spindle speed and depth of cut as control factors, and the noise factors were the operating chamber temperature and the usage of different tool inserts in the same specification. An orthogonal array of L9 (34) was used and the optimal cutting combination was determined by seeking the best surface roughness (response) and signal-to-noise ratio.


Author(s):  
Charanya Phaholthep ◽  
Thirawut Bunyasakseri ◽  
Paweena Phaholthep

Public hospitals should be designed to clover as wider inclusivity levels as possible forproviding access for all. Unfortunately, and for a variety of reasons, a quality service is not always provided. When evaluation of the service quality in healthcare organizations is carried out, it is mostly conducted in terms of medical service quality, whilst the physical layout, functionality and facilitating devices are not given as much scrutiny. Post Occupation Evaluation (POE) is notably an efficient process for checking the satisfaction of users after the building has been in-used for a certain period of times. However, hospital is generally a type of building and service that need to support users with a variety of physical capabilities thus, a conventional POE may not cover all requirements of users, so this research has employed the UD concepts as a basis to combined with POE for evaluating service performance of a hospital of the case study, Naresuan University hospital, THAILAND. Even though the POE delivered a good design suggestion that is beneficial to users with a wide range of physical ability but that may not guarantee the new design will be agreed by all stakeholders and implemented through success. As a matter of fact, to success an implementing of a good design does not depend solely on a designer, specifically for this case study, a universal design to a hospital. This research found that to make UD perfectly effects in a hospital (in Thailand context) may require more supportive factors beyond just pointing out problems related to physical conditions of the design and suggest a design solution. As in the context of Thailand, this research identified 4 factors contributing to the success of UD which the designer should be accountable for (1) public understanding of the basic concepts of UD (2) all the related background such as culture, tradition and economic etc. that contributed the attitudes of all stakeholders (of the hospital) towards people with physical impairments (3) the rights, laws, regulations and policies for people with disabilities in the context of the country and (4) the participation of all types of users. And in doing so, this research added an extensive evaluation to the general POE to cover as more factors as possible to those involved with the design implementation. Therefore, an extensive evaluation process so called “Comprehensive Post-Occupancy Evaluation C-POE” has been created and employed in this study for offering more comprehensive solution that cover all possibilities cause of problems, the evaluation processes are as follows; (1) evaluating physical features and users’ behavior (the experimental access audit), (2) examining administrative policy, HA and UD principles and (3) interviewing attitude of executives about UD.


2018 ◽  
Vol 4 ◽  
Author(s):  
Ivan Mata ◽  
Georges Fadel ◽  
Anthony Garland ◽  
Winfried Zanker

Designers can involve users in the design process. The challenge lies in reaching multiple users and finding the best way to use their input in the design process. Affordance based design (ABD) is a design method that focuses in part on the perceived or existing interactions between the user and the artifact. The shape and physical characteristics of the product enable the user to perceive some of its affordances. The goal of this research is to use ABD, along with an optimization tool, to evolve the shape of products toward better perceived solutions using the input from users. A web application has been developed that evolves design concepts using an interactive multi-objective genetic algorithm (IGA) relying on the user assessment of product affordances. As a proof of concept, a steering wheel is designed using the application by having users rate specific affordances of solutions presented to them. The results show that the design concepts evolve toward better perceived solutions, allowing designers to explore more solutions that reflect the preferences of end users. Relationships between affordances and product design variables are also explored, revealing that specific affordances can be targeted with changes in design parameter values and highlighting the tie between physical characteristics and affordances.


Author(s):  
Wei Chen ◽  
Kwok-Leung Tsui ◽  
Janet K. Allen ◽  
Farrokh Mistree

Abstract In this paper we introduce a comprehensive and rigorous robust design procedure to overcome some limitations of the current approaches. A comprehensive approach is general enough to model the two major types of robust design applications, namely, • robust design associated with the minimization of the deviation of performance caused by the deviation of noise factors (uncontrollable parameters), AND • robust design due to the minimization of the deviation of performance caused by the deviation of control factors (design variables). We achieve mathematical rigor by using, as a foundation, principles from the design of experiments and optimization. Specifically, we integrate the Response Surface Method (RSM) with the compromise Decision Support Problem (DSP). Our approach is especially useful for design problems where there are no closed-form solutions and system performance is computationally expensive to evaluate. The design of a solar powered irrigation system is used as an example. Our focus in this paper is on illustrating our approach rather than on the results per se.


2006 ◽  
Vol 128 (4) ◽  
pp. 832-843 ◽  
Author(s):  
Janet K. Allen ◽  
Carolyn Seepersad ◽  
HaeJin Choi ◽  
Farrokh Mistree

The intent in robust design is to improve the quality of products and processes by reducing their sensitivity to variations, thereby reducing the effects of variability without removing its sources. Robust design is especially useful for integrating information from designers working at multiple length and time scales. Inevitably this involves the integration of uncertain information. This uncertainty is derived from many sources and robust design may be classified based on these sources—uncertainty in noise or environmental and other noise factors (type I); uncertainty in design variables or control factors (type II); and uncertainty introduce by modeling methods (type III). Each of these types of uncertainty can be mitigated by robust design. Of particular interest are the challenges associated with the design of multidisciplinary and multiscale systems; these challenges and opportunities are examined in the context of materials design.


2018 ◽  
Vol 1 (2) ◽  
pp. 1-17
Author(s):  
Tedi Budiman

One example of the growing information technology today is mobile learning, mobile learning which refers to mobile technology as a learning medium. Mobile learning is learning that is unique for each student to access learning materials anywhere, anytime. Mobile learning is suitable as a model of learning for the students to make it easier to get an understanding of a given subject, such as math is pretty complicated and always using formulas.The design method that I use is the case study method, namely, learning, searching and collecting data related to the study. While the development of engineering design software application programs that will be used by the author is the method of Rapid Application Development (RAD), which consists of 4 stages: Requirements Planning Phase, User Design Phase, Construction Phase and Phase Cotuver.


Sign in / Sign up

Export Citation Format

Share Document