Optimization of Surface Roughness by Taguchi Design Method

2010 ◽  
Vol 156-157 ◽  
pp. 392-395
Author(s):  
Md Raihanuzzaman Rumman ◽  
Soon Jik Hong

Maintaining good surface quality usually involves additional manufacturing cost or loss of productivity. The Taguchi design is an efficient and effective experimental method in which a response variable can be optimized, given various control and noise factors, using fewer resources than a factorial design. This study included feed rate, spindle speed and depth of cut as control factors, and the noise factors were the operating chamber temperature and the usage of different tool inserts in the same specification. An orthogonal array of L9 (34) was used and the optimal cutting combination was determined by seeking the best surface roughness (response) and signal-to-noise ratio.

Author(s):  
Ahmed Zaidan Mohammed Shammari ◽  
Kamal Ati Amwead ◽  
Auday Shaker Hadi

The tool steel identifying AISI D2 is commonly used for cold working operations, such as sheet metal forming, cold extrusion and forging operation. To perform in these applications, they must have excellent strength, hardness, and wear resistance. The aim of the present study is to find optimal process parameters for end milling of hardened steel AISI D2 (56 HRC) using Taguchi method. A L25 array, Taguchi’s signal-to-noise ratio and ANOVA are employed to determine effects of many control factors (spindle speed, feed rate, and depth of cut) on surface roughness. In this paper, results show that the spindle speed is most influencing parameters.


2014 ◽  
Vol 1027 ◽  
pp. 76-79
Author(s):  
Jing Wen Zhou ◽  
Yan Chen ◽  
Yu Can Fu ◽  
Jiu Hua Xu ◽  
An Dong Hu ◽  
...  

End milling is conducted on carbon fiber reinforced plastics (CFRP) by using a diamond coated cemented carbide tool. Taguchi design method is employed to investigate the influence of cutting speed, feed rate and depth of cut on surface roughness. In Taguchi method, a three level orthogonal array has been used to determine the S/N ratio. Analysis of variance (ANOVA) and pareto diagram are used to determine the most significant milling parameters affecting the surface roughness. The results indicate that only the depth of cut has great statistical significance on the surface roughness, while the influences of cutting speed and feed are negligible. SEM micrographs shows that with the increase of depth of cut, a great deal epoxy resin will adhere to the finished surface. The greatest S/N ratio (1.46dB) is obtained during the validation experiment with optimum milling parameters.


2013 ◽  
Vol 4 (1) ◽  
pp. 63-68 ◽  
Author(s):  
Zs. Kun ◽  
I. G. Gyurika

Abstract The stone products with different sizes, geometries and materials — like machine tool's bench, measuring machine's board or sculptures, floor tiles — can be produced automatically while the manufacturing engineer uses objective function similar to metal cutting. This function can minimise the manufacturing time or the manufacturing cost, in other cases it can maximise of the tool's life. To use several functions, manufacturing engineers need an overall theoretical background knowledge, which can give useful information about the choosing of technological parameters (e.g. feed rate, depth of cut, or cutting speed), the choosing of applicable tools or especially the choosing of the optimum motion path. A similarly important customer's requirement is the appropriate surface roughness of the machined (cut, sawn or milled) stone product. This paper's first part is about a five-month-long literature review, which summarizes in short the studies (researches and results) considered the most important by the authors. These works are about the investigation of the surface roughness of stone products in stone machining. In the second part of this paper the authors try to determine research possibilities and trends, which can help to specify the relation between the surface roughness and technological parameters. Most of the suggestions of this paper are about stone milling, which is the least investigated machining method in the world.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
A. Bovas Herbert Bejaxhin ◽  
G.M. Balamurugan ◽  
S.M. Sivagami ◽  
K. Ramkumar ◽  
V. Vijayan ◽  
...  

Dual heat treatment (DHT) effect is analyzed using the machining of Al6061-T6 alloy, a readily available material for quickly finding the machining properties. The heat treatments are conducted twice over the specimen by the furnace heating before processing through CNC machining. The HSS and WC milling cutters are preferred for the diameter of 10 mm for the reviewed rotational speeds of 2000 rpm and 4000 rpm, and the constant depth of cut of 0.5 mm is chosen based on various reviews. Worthy roughness could be provided mostly by the influence of feed rates preferred here as 0.05 mm/rev and 0.1 mm/rev. The influencing factors are identified by the Taguchi, genetic algorithm (GA), and Artificial Neural Network (ANN) techniques and compared within it. The simulation finding also helps to clarify the relationship between influenced machining constraints and roughness outcomes of this project. The average values of heat treated and nonheat treated Al6061-T6 are compared and it is to be evaluated that 41% improvement is obtained with the lower surface roughness of 1.78975 µm and it shows good surface finish with the help of dual heat treatment process.


2014 ◽  
Vol 14 (3) ◽  
pp. 171-175 ◽  
Author(s):  
Yashvir Singh ◽  
Amneesh Singla ◽  
Ajay Kumar

AbstractThis paper presents a statistical analysis of process parameters for surface roughness in drilling of Al/Al2O3p metal matrix composite. The experimental studies were conducted under varying spindle speed, feed rate, point angle of drill. The settings of drilling parameters were determined by using Taguchi experimental design method. The level of importance of the drilling parameters is determined by using analysis of variance. The optimum drilling parameter combination was obtained by using the analysis of signal-to-noise ratio. Through statistical analysis of response variables and signal-to-noise ratios, the determined significant factors are depth of cut and drill point angle with the contributions of 87% and 12% respectively, whereas the cutting speed is insignificant contributing by 1% only. Confirmation tests verified that the selected optimal combination of process parameter through Taguchi design was able to achieve desired surface roughness.


2019 ◽  
Vol 805 ◽  
pp. 3-7
Author(s):  
Manus Sriswat ◽  
Kittipong Kimapong ◽  
Atthakorn Chanchana

Grinding process is necessary final process of making cylindrical parts with less than Ra 0.4 surface roughness. Generally we cannot obtain good surface quality without grinding process. As the experience of the authors, using CBN (Cubic Boron Nitride) insert to turning cylindrical parts could be obtained Ra 0.438 surface roughness. The surface roughness result is similar to ground parts. This result becomes the main focus of the study. Authors study to find out factors affecting CBN performance in turning with CBN to obtain less than Ra 0.4 surface roughness. According to the study, it was found that tool contact area allied to surface roughness. The experiment is turning S45C medium carbon steel under the following condition: Cutting speed is 300 m./min, Feed is 0.05 mm./rev and depth of cut is 0.1 mm. Experiment under the same condition in different contact area. Modify contact area of CBN insert to be 5,10,15,20 and 25 mm. and testing in order. CBN insert standard type contact area is 0 mm. Compare test results of modified CBN inserts with standard type result. The results of experiments were as follows: 1) Turning steel with CBN contact area 10 mm. was obtained Ra 0.456 surface roughness, 2) Turning steel with CBN contact area 15 mm. was obtained Ra 0.293 surface roughness, Thus less than Ra 0.4 surface roughness.


2018 ◽  
Vol 12 (2) ◽  
pp. 104-108 ◽  
Author(s):  
Yusuf Fedai ◽  
Hediye Kirli Akin

In this research, the effect of machining parameters on the various surface roughness characteristics (arithmetic average roughness (Ra), root mean square average roughness (Rq) and average maximum height of the profile (Rz)) in the milling of AISI 4140 steel were experimentally investigated. Depth of cut, feed rate, cutting speed and the number of insert were considered as control factors; Ra, Rz and Rq were considered as response factors. Experiments were designed considering Taguchi L9 orthogonal array. Multi signal-to-noise ratio was calculated for the response variables simultaneously. Analysis of variance was conducted to detect the significance of control factors on responses. Moreover, the percent contributions of the control factors on the surface roughness were obtained to be the number of insert (71.89 %), feed (19.74 %), cutting speed (5.08%) and depth of cut (3.29 %). Minimum surface roughness values for Ra, Rz and Rq were obtained at 325 m/min cutting speed, 0.08 mm/rev feed rate, 1 number of insert and 1 mm depth of cut by using multi-objective Taguchi technique.


Author(s):  
R Thirumalai ◽  
JS Senthilkumaar ◽  
P Selvarani ◽  
S Ramesh

Extensive researchers have conducted several experiments in the past for selecting the optimum parameters in machining nickel based alloy – Inconel 718. These experiments conducted so far are dealt with dry machining and flooded coolant machining of nickel alloy Inconel 718. In this research study, the usage of refrigerated coolant is also dealt with and it is compared with dry machining and flooded coolant machining. Cutting speed, feed and depth of cut are considered as the machining parameters. The effectiveness of the refrigerated coolant in machining the heat resistant super alloy material Inconel 718 with respect to these machining parameters are described in this article. The machinability studies parameters were generated with surface roughness and flank wear. The performance of uncoated carbide cutting tool was investigated at various cutting condition under dry, flooded coolant and refrigerated coolant machining. The relationship between the machining parameters and the performance measures were established and using analysis of variance significant machining parameters determined. This article made an attempt to Taguchi optimization technique to study the machinability performances of Inconel 718. Taguchi approach is an efficient and effective experimental method in which a response variable can be optimized, given various control and noise factors, using fewer experiments than a factorial design. Taguchi’s optimization analysis indicates that the factors level, its significance to influence the surface roughness and flank wear for the machining processes. Confirmation tests were conducted at an optimal condition to make a comparison between the experimental results foreseen from the mentioned correlations.


2019 ◽  
Vol 13 (4) ◽  
pp. 517-525
Author(s):  
Masato Inoue ◽  
Wataru Suzuki ◽  
◽  

To achieve a universal design that satisfies diverse user requirements associated with aging and internationalization, designers must make a decision based on diverse user requirements. Designers have generally incorporated average human physical characteristics in their designs. Thus, user limitations are critically important. Traditional design methods often regard engineering and product design as iterative processes based on point values. However, when user information is represented as a point value, the resulting product satisfies only that specific user group and does not necessarily satisfy diverse user groups. This study proposes a universal design method that obtains diversely ranged design solutions for user requirements. The proposed method defines diverse user requirements, design variables, and user characteristics as sets, which range in value. To represent user information accurately, users are classified into numerous groups using classification techniques. Design variables are divided into two types: control and noise. Control factors are designer-controllable variables that are based on design specifications. Noise factors are designer-uncontrollable variables representing user characteristics. To derive a ranged design solution set, designers clarify the relationship between performance and design variables. Ranged solutions satisfying required performance are derived for each group using all relational expressions and ranged variable values. The combinations of divided design variables that cannot satisfy the required performance are eliminated from the design proposal, and the narrowed range of design variables become ranged solutions. The ranged solutions are derived for each group, and the common range of design variables is the ranged solution for all users. This paper chooses the design problem of the strap height of a train as a case study of the proposed universal design method. In this case study, we consider diverse user requirements based on the variability of physical characteristics. This paper discusses the suitability of our proposed approach for obtaining ranged solutions that reflect the physical characteristics of diverse users.


2011 ◽  
Vol 291-294 ◽  
pp. 810-815 ◽  
Author(s):  
Qi Wu ◽  
Jun Wang

An experimental study of the pulsed laser milling process for a sintered polycrystalline diamond is presented. The characteristics and quality of the cavities machined with a Yd laser under different pulse energies, pulse overlaps, scan overlaps and numbers of passes are discussed, together with the effects of these parameters on the cavity profile, depth of cut and surface roughness. A statistical analysis is also presented to study the relationship between the process parameters and surface roughness. It shows that the optimum pulse overlap and pulse energy may be used to achieve good surface finish, whereas scan overlap and number of passes can be selected to improve the depth of cut without much effect on the surface finish.


Sign in / Sign up

Export Citation Format

Share Document