scholarly journals Improved Method for Synchronizing Motion Accuracy of Linear and Rotary Axes Under Constant Feed Speed Vector at End Milling Point – Investigation of Motion Error Under NC-Commanded Motion –

2019 ◽  
Vol 13 (5) ◽  
pp. 679-690 ◽  
Author(s):  
Takamaru Suzuki ◽  
Kazuki Yoshikawa ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama ◽  
Takakazu Ikegami ◽  
...  

A 5-axis machining center (5MC) is noted for its synchronous control capability, making it a feasible tool for quickly and accurately machining complicated three-dimensional surfaces such as propellers and hypoid gears as it is equipped with a direct-drive (DD) motor in the rotary axis. The current research work identified the necessity of improving both the accuracy of the machined shape and the consistency of the free-form machined surface. A method for maintaining the feed speed vector at the milling point by controlling two linear axes and the rotary axis of a 5MC to improve the quality of the machined surface was investigated. Additionally, a method was proposed for reducing the shape error of machined workpieces by considering differences in the servo characteristics of the three axes. The shape error was significantly reduced by applying the proposed method using a precedent control coefficient determined via calculations. To maintain the feed speed vector at the milling point in the machining of complex shapes, rapid velocity change in each axis is often required, leading to inaccuracy caused by torque saturation at a DD motor in the rotary axis. The results of this study indicate that torque saturation can be evaluated via simulation and that the machining accuracy and consistency can be improved by accounting for these errors using the proposed precedent control coefficient method.

Author(s):  
Takamaru Suzuki ◽  
Takakazu Ikegami ◽  
Takayuki Akai ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama ◽  
...  

Recently It is difficult to maintain the high surface quality ingenerating curved surface shape under five-axis controlled end-milling. In this study, we aimed at maintaining feed speed vector at milling point by controlling two linear axes and a rotary axis with a five-axis machining center, to improve machined surface quality and suggested a method for solving shape error of machined workpiece considering differences of three axes’s sarvo characteristics. As the results, it could be seen that shape error greatly decreased based on the proposed method.


2012 ◽  
Vol 523-524 ◽  
pp. 54-57
Author(s):  
Kai Xu ◽  
Hiroyuki Sasahara

This study describes a new machining strategy to make regularly aligned cutter marks on free-form surface efficiently for increasing the added value of industrial product. While the free-form surface is divided into many small patch segments employing curved surface patch division milling technique which can substitute for the conventional method, thus avoiding the influence of the change in the curvature. And the patch segments will be machined by a spiral tool path respectively, so that regularly aligned cutter marks can be successfully formed on the curved surface patches by controlling cross-feed, feed speed per tooth, number of teeth and the length of the tool path. Comparing the machined surface and the simulation result, the cutter marks agree with it. If the surface is machined only by the ball end milling with a machining center, this method will be a very effective tool for the machinery industry.


Author(s):  
Yuma Maruyama ◽  
Takayuki Akai ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama ◽  
Keiji Ogawa

Recently, a novel manufacturing technology has spread out with a five-axis machining center. It is especially important to keep the surface roughness on an entire machined surface constant. Thus, we proposed a novel method for maintaining a constant feed speed vector at the cutting point between the end-mill tool and the workpiece surface by controlling two linear axes and a rotary axis with a five-axis machining center. In the present report, we focused on machining the combined inner and outer radius curvature and investigating the influence of synchronous control error between the linear axes and rotary axis on the machining accuracy and surface roughness. As a result, we determined that it is possible to suppress sudden change in the synchronous motion error by accurately aligning the motion direction of the linear and rotary axes and the feed speed vector at milling point at the contact point of the inner and outer circles.


Author(s):  
Zongze Li ◽  
Ryuta Sato ◽  
Keiichi Shirase

Abstract Motion error of machine tool feed axes influences the machined workpiece accuracy. However, the influences of each error sources are not identical; some errors do not influence the machined surface although some error have significant influences. In addition, five-axis machine tools have more error source than conventional three-axis machine tools, and it is very tough to predict the geometric errors of the machined surface. This study proposes a method to analyze the relationships between the each error sources and the error of the machined surface. In this study, a kind of sphere-shaped workpiece is taken as a sample to explain how the sensitivity analysis makes sense in ball-end milling. The results show that the method can be applied for the axial errors, such as motion reversal errors, to make it clearer to obverse the extent of each errors. In addition, the results also show that the presented sensitivity analysis is useful to investigate that how the geometric errors influence the sphere surface accuracy. It can be proved that the presented method can help the five-axis machining center users to predict the machining errors on the designed surface of each axes error motions.


2010 ◽  
Vol 4 (3) ◽  
pp. 243-251 ◽  
Author(s):  
Hiroyasu Iwabe ◽  
◽  
Hideaki Matsuhashi ◽  
Hayato Akutsu ◽  
Tomoyuki Shioya ◽  
...  

In this paper, the FEM analysis and the machining of a workpiece using a non-rotational tool are attempted in order to produce a highly accurate surface on a thin wall. Also, the machining accuracy of the thin wall produced by the non-rotational tool is compared with that produced by an end mill. The main results are as follows. (1) FEM models for the tool and workpiece are made and the machining accuracy is predicted based on the deflection analysis using FEM due to the cutting force. (2) The tendency of the shape of machined surface is almost coincident with that of the predicted shape, so the propriety of the method of analysis is verified. (3) Both dimensional and shape error on the inside and outside surfaces of the workpiece produced by the non-rotational tool prove larger than the predicted values. Although the shape error proved a little larger than the predicted value, the target value of 5μm was achieved. (4) It is shown that the dimensional error due to under cutting decreases with the decrease in the radius of the tool edge. And also, on and after the second cutting process, the cutting at the commanded depth of cut was achieved even if the micro depth of cut.


2014 ◽  
Vol 800-801 ◽  
pp. 852-857 ◽  
Author(s):  
Yu Kui Cai ◽  
Zhan Qiang Liu

The performance of the micro nozzle is determined primarily by its machined surface topology and geometric profile. A circular cross-section micro-Laval nozzle is modeled and studied by using numerical simulation in this paper. The real residual height and residual area of machined nozzle surface with ball-end milling cutter are proposed. A micro-Laval nozzle was machined successfully. It is found that the ball end milling cutter with large radius is suitable for finishing operations in the viewpoint of nozzle performance. Moreover, the serial process of drilling and milling has been proved by experiments with which both high-level machining accuracy and performance can meet the nozzle requirement.


2019 ◽  
Vol 5 (3) ◽  
pp. 497-511
Author(s):  
Takamaru Suzuki ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama ◽  
Takayuki Akai ◽  
Takakazu Ikegami
Keyword(s):  

2013 ◽  
Vol 546 ◽  
pp. 137-141 ◽  
Author(s):  
Yang Yu Wang ◽  
Hao Dong Zhou ◽  
Dong Hui Wen ◽  
Shi Ming Ji ◽  
Hui Qiang Wang

The milling vibration affects machined surface quality and the size of the error, and has an important impact on the machining accuracy. This paper studies the different cutting parameters on cutting conditions on milling vibration during ball end milling Cr12MoV hardened steel assembled with different hardness steels, and use LMS. Test. Lab software to analyze the vibration signal on the condition of different spindle speed milling direction, axial depth of cut, and the vibration signal of transitional zone and the non-transitional zone are compared, providing the basis for a reasonable choice of milling parameters.


2017 ◽  
Vol 11 (2) ◽  
pp. 171-178 ◽  
Author(s):  
Tadahiro Nishiguchi ◽  
◽  
Shogo Hasegawa ◽  
Ryuta Sato ◽  
Keiichi Shirase ◽  
...  

Several methods for evaluating the motion accuracy of the rotary axes in five-axis machining centers have been proposed till date. As it is known that particular motion errors exist around the motion direction changing points, it is important to evaluate the behavior of the rotary axes around these points. However, the influence of the motion error in the translational axes is included in the conventional evaluation results, as the translational axes reverse at the motion direction changing points about the rotary axes. In this study, an evaluation method which can assess the behavior of a rotary axis around motion direction changes by synchronous motion of translational and rotary axes is proposed. In this method, the direction of translational axes does not change when the motion direction of a rotary axis changes. A measurement test and actual cutting tests are carried out to clarify the influence of the behaviors of rotary axes on the motion trajectory and machined surface, caused by the change in the motion direction of the rotary axis. Simulations of the motion are also carried out to discuss the causes of inaccuracy.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4745
Author(s):  
Haruki Kino ◽  
Takumi Imada ◽  
Keiji Ogawa ◽  
Heisaburo Nakagawa ◽  
Hitomi Kojima

The importance of micromachining using small diameter end mills and the dies used for them has been increasing in the machining of small parts. However, the reality is that there are various requirements to improve the machining surface, machining accuracy, machining efficiency, and tool life. Therefore, this paper discusses the possibility of satisfying these requirements by high-speed up cut milling in side cutting. The goal of this study was to solve the aforementioned problems, by conducting a detailed analysis of the machining phenomena in order to understand their mechanisms. In particular, the effects of high-speed cutting using a high-speed air-turbine spindle with highly stiff rolling bearings were analyzed. Moreover, cutting experiments were conducted by measuring the cutting force and flank wear of the tool, to reveal the differences in the cutting phenomena relative to the cutting direction in high-speed micro end milling. Description of the machined surface and the measurement of its profile were also included in the discussions. On the basis of the results, high-speed up cut milling is a better choice than down cut milling; furthermore, a high-feed rate further increases machining efficiency and improves tool life.


Sign in / Sign up

Export Citation Format

Share Document