Chain Restaurant Work Scheduling Based on Genetic Algorithm with Fuzzy Logic

Author(s):  
Makoto Watanabe ◽  
◽  
Hajime Nobuhara ◽  
Kazuhiko Kawamoto ◽  
Fangyan Dong ◽  
...  

A quasi-optimization algorithm to generate chain restaurant work scheduling (WS) is proposed based on a genetic algorithm with fuzzy logic, where the whole weekly chain restaurant WS problem is fuzzily decomposed into 7 daily WS problems and a combined weekly WS problem. The proposed algorithm expresses the requirements of individual members by membership functions in fuzzy logic and finds a near-optimal solution using the genetic algorithm. Experimental results verified that a 24-hour 7-day schedule for 15 workers at a chain restaurant is produced in 6 minutes using the proposed algorithm implemented with C++ and executed on a PC. A professional expert evaluated WS quality as satisfactory.

Author(s):  
Fei Tang

To improve the performance of bionic algorithms, an intelligent bionic optimization algorithm is proposed based on the morphological characteristics of trees growing toward light. The growth organ of the tree is mapped into the coding of the tree growth algorithm, and the entire tree is formed by selecting the fastest growing individual to form the next level of the tree. When the tree growth reaches a certain level, the individual code of the shoot tip is added to enhance the search ability of the individual shoot tip in the growth space of the entire tree. This method achieves a near-optimal solution. The experimental results were compared with the optimization results of the genetic algorithm and the ant colony algorithm using the classic optimization function. The experimental results show that this algorithm has fewer iterations, a faster convergence speed, higher precision, and a better optimization ability than the genetic algorithm or the ant colony algorithm.


2013 ◽  
Vol 274 ◽  
pp. 345-349 ◽  
Author(s):  
Mei Lan Zhou ◽  
Deng Ke Lu ◽  
Wei Min Li ◽  
Hui Feng Xu

For PHEV energy management, in this paper the author proposed an EMS is that based on the optimization of fuzzy logic control strategy. Because the membership functions of FLC and fuzzy rule base were obtained by the experience of experts or by designers through the experiment analysis, they could not make the FLC get the optimization results. Therefore, the author used genetic algorithm to optimize the membership functions of the FLC to further improve the vehicle performance. Finally, simulated and analyzed by using the electric vehicle software ADVISOR, the results indicated that the proposed strategy could easily control the engine and motor, ensured the balance between battery charge and discharge and as compared with electric assist control strategy, fuel consumption and exhaust emissions have also been reduced to less than 43.84%.


2019 ◽  
Vol 11 (11) ◽  
pp. 168781401989019 ◽  
Author(s):  
Huangshui Hu ◽  
Tingting Wang ◽  
Siyuan Zhao ◽  
Chuhang Wang

In this article, a genetic algorithm–based proportional integral differential–type fuzzy logic controller for speed control of brushless direct current motors is presented to improve the performance of a conventional proportional integral differential controller and a fuzzy proportional integral differential controller, which consists of a genetic algorithm–based fuzzy gain tuner and a conventional proportional integral differential controller. The tuner is used to adjust the gain parameters of the conventional proportional integral differential controller by a new fuzzy logic controller. Different from the conventional fuzzy logic controller based on expert experience, the proposed fuzzy logic controller adaptively tunes the membership functions and control rules by using an improved genetic algorithm. Moreover, the genetic algorithm utilizes a novel reproduction operator combined with the fitness value and the Euclidean distance of individuals to optimize the shape of the membership functions and the contents of the rule base. The performance of the genetic algorithm–based proportional integral differential–type fuzzy logic controller is evaluated through extensive simulations under different operating conditions such as varying set speed, constant load, and varying load conditions in terms of overshoot, undershoot, settling time, recovery time, and steady-state error. The results show that the genetic algorithm–based proportional integral differential–type fuzzy logic controller has superior performance than the conventional proportional integral differential controller, gain tuned proportional integral differential controller, conventional fuzzy proportional integral differential controller, and scaling factor tuned fuzzy proportional integral differential controller.


2014 ◽  
Vol 556-562 ◽  
pp. 3514-3518
Author(s):  
Lan Juan Liu ◽  
Bao Lei Li ◽  
Qin Hu Zhang ◽  
Dan Jv Lv ◽  
Xin Ling Shi ◽  
...  

In this paper, a novel heuristic algorithm named Multivariant Optimization Algorithm (MOA) is presented to solve the 0-1 Knapsack Problem (KP). In MOA, multivariant search groups (locate and global search groups) execute the global exploration and local exploitation iteratively to locate the optimal solution automatically. The presented algorithm has been compared with Genetic Algorithm (GA) and Particle swarm algorithm (PSO) based on five data sets, results show that the optimization of MOA is better than GA and PSO when the dimension of problem is high.


2019 ◽  
Vol 8 (4) ◽  
pp. 39-59
Author(s):  
Shashwati Mishra ◽  
Mrutyunjaya Panda

Thresholding is one of the important steps in image analysis process and used extensively in different image processing techniques. Medical image segmentation plays a very important role in surgery planning, identification of tumours, diagnosis of organs, etc. In this article, a novel approach for medical image segmentation is proposed using a hybrid technique of genetic algorithm and fuzzy logic. Fuzzy logic can handle uncertain and imprecise information. Genetic algorithms help in global optimization, gives good results in noisy environments and supports multi-objective optimization. Gaussian, trapezoidal and triangular membership functions are used separately for calculating the entropy and finding the fitness value. CPU time, Root Mean Square Error, sensitivity, specificity, and accuracy are calculated using the three membership functions separately at threshold levels 2, 3, 4, 5, 7 and 9. MRI images are considered for applying the proposed method and the results are analysed. The experimental results obtained prove the effectiveness and efficiency of the proposed method.


2011 ◽  
Vol 1 ◽  
pp. 226-229 ◽  
Author(s):  
Le Cheng ◽  
Zhi Bo Wang ◽  
Yan Hong Song ◽  
Ai Hua Guo

We propose a novel cockroach swarm optimization(CSO) algorithm for Traveling Salesman Problem(TSP) in this paper .In CSO, a series of biological behavior of cockroach are simulated such as grouping living and searching food ,moving-nest, individual equal and so on. For cockroaches crawl and search the optimal solution in the solution space, we assume that the solution which has been searched as the food can split up some new food around solution’s position. The experimental results demonstrate that the CSO has better performance than particle swarm optimization in TSP.


Author(s):  
Fei Tang

To improve the optimization efficiency of the intelligent bionic optimization algorithm, this paper proposes intelligent bionic optimization algorithm based on the growth characteristics of tree branches. Firstly, the growth organ of the tree is mapped into the coding of the tree growth algorithm (intelligent bionic optimization algorithm). Secondly, the entire tree, that is the growing tree, is formed by selecting the individual that grows fast to generate the next level of shoot population. Lastly, if the growing tree reaches a certain level, the individual coding of the shoots is added to enhance the searching ability of the individuals of current generation in the growth tree growth space, so that the algorithm approaches the optimal solution. The experimental results were compared with the optimization results of the genetic algorithm and the ant colony algorithm using the classic optimization function and showed that this algorithm has fewer iterations, a faster convergence speed, higher precision, and a better optimization ability than the genetic algorithm and the ant colony algorithm.


2013 ◽  
Vol 11 (10) ◽  
pp. 3043-3050
Author(s):  
Sedigheh Asiyaban ◽  
Zohreh Mousavinasab

Problem of courses timetabling is a time consuming and demanding issues in any education environment that they are involved in every semester. The main aim of timetabling problem is the allocation of a number of courses to a limited set of resources such as classrooms, time slots, professors and students so that some predefined hard and soft constraints are satisfied. Furthermore, the available resources are used to the best.    In fact course timetabling is one of optimization problems. It has been proved computational complexity of this problem is NP, so there is no optimal solution for that. Therefore, approximation and heuristic techniques are used to find near optimal solutions. Genetic algorithm for its multidirectional feature has been one of the most widely used approaches in recent years. Hence, in this paper an improved genetics algorithm for timetabling problem has been proposed. In proposed algorithm, the fitness of solutions to satisfy soft constraints due to ambiguous nature of those has been specified using fuzzy logic. Also, local search methods have been applied to avoid the genetic algorithm to be trapped in a local optimum. As well as, the multi-population property is intended to reduce the time to reach the optimum solution.  Evaluation results show that the proposed solutions are able to produce promising results for the university courses timetabling.


2016 ◽  
Vol 3 (2) ◽  
pp. 149-158 ◽  
Author(s):  
Imam Ahmad Ashari ◽  
Much Aziz Muslim ◽  
Alamsyah Alamsyah

Scheduling problems at the university is a complex type of scheduling problems. The scheduling process should be carried out at every turn of the semester's. The core of the problem of scheduling courses at the university is that the number of components that need to be considered in making the schedule, some of the components was made up of students, lecturers, time and a room with due regard to the limits and certain conditions so that no collision in the schedule such as mashed room, mashed lecturer and others. To resolve a scheduling problem most appropriate technique used is the technique of optimization. Optimization techniques can give the best results desired. Metaheuristic algorithm is an algorithm that has a lot of ways to solve the problems to the very limit the optimal solution. In this paper, we use a genetic algorithm and ant colony optimization algorithm is an algorithm metaheuristic to solve the problem of course scheduling. The two algorithm will be tested and compared to get performance is the best. The algorithm was tested using data schedule courses of the university in Semarang. From the experimental results we conclude that the genetic algorithm has better performance than the ant colony optimization algorithm in solving the case of course scheduling.


Sign in / Sign up

Export Citation Format

Share Document