Application of Modular Network Self-Organization Map to Temporal and Spatial Projection of Wind Speed with Wind Data at Biased Positions

Author(s):  
Mitsuharu Hayashi ◽  
◽  
Ken Nagasaka

Wind generation is one of the fastest growing resources among renewable energies worldwide including Japan. As Japan is an island country surrounded by ocean, the on-shore landscape topography suitable for wind generation is limited. Therefore, based on the wind map until the year 2030, it is expected that new off-shore wind generation installations will be more suitable. For this reason, it is very important to determine the wind characteristics of the candidate areas for installing wind generation; however, in most off-shore installation sites, availability of weather condition data is poor and significant time and cost are required to accurately measure pin-point wind/weather conditions data. In this study, our goal is to project the wind speed of an unseen area (where weather condition data are not available) by mapping the seen areas (where weather condition data are available) around the target area using a modularized Artificial Neural Network (ANN) referred to as a Self-Organization Map (SOM). By learning the correlation between modularized ANNs of seen and unseen areas, the result of this temporal and spatial projection is the prediction of wind speed of a target area. We believe that the proposed technique will significantly reduce the amount of time and cost involved in selection of off-shore installation sites. Moreover, it should contribute to accelerated development and implementation of off-shore wind power generation in the future.

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Yang Yang ◽  
Yao Gang ◽  
Wang Rong ◽  
Wang Hengyu

With rapid economic development of China, demand for energy is growing rapidly. Many experts have begun to pay attention on exploiting wind energy. Wind characteristics of three meteorological stations in China were analyzed to find out if or not it is possible to build a wind farm in this paper. First of all, studies about the wind characteristics and potential wind energy were summarized. Then ways of collecting and manipulating wind data were introduced. Wind-generation potential was assessed by the method of Weibull distribution. Wind shear exponent, extreme wind speed in 50 years, and turbulence intensity were calculated. The wind characteristics were summarized and assessment of wind-generation potential was given. At last, the wind was simulated with autoregressive method by Matlab software.


2019 ◽  
Vol 8 (4) ◽  
pp. 3183-3186

Agrometeorology plays an important role in Precision Agriculture for resource management and effects both the quality and quantity of agriculture products. The existing solutions for monitoring weather parameters in agrometeorology are highly global and costly. These solutions are most of the time are inaccessible to the common man or farmers and require frequent physical visits to the field for obtaining information. But in agriculture monitoring highly localized weather condition is required because the weather conditions applicable farm land of one city may not be as such for a farmer of small rural. Weather conditions such as wind speed, wind direction, rainfall, solar radiation, atmospheric pressure, air particle level humidity and temperature measurement plays an important role in different fields like Agriculture, Science, Engineering and Technology. The proposed work provides an optimal solution for monitoring the weather conditions at extremely local level with low cost, compact Internet of Things (IoT) based system. In this paper the design of the system is presented with the use of NodeMCU for realizing the low-cost solution. This low-cost weather station is a product equipped with sensors to measure atmospheric conditions like temperature, humidity, wind speed, wind direction which has predominant effect in agriculture. With embedded IoT connectivity, the proposed weather station is capable to upload the information to IoT cloud ad can be used for further analysis.The user can access the information uploaded by the system anywhere from the world with the help on mobile app or web link on laptop/desktop. The “Low cost Compact IoT enabled Weather Station” does not have any display which make the proposed system more power efficient with overall current rating of about only 80mA to 90mA.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4068
Author(s):  
Xu Huang ◽  
Mirna Wasouf ◽  
Jessada Sresakoolchai ◽  
Sakdirat Kaewunruen

Cracks typically develop in concrete due to shrinkage, loading actions, and weather conditions; and may occur anytime in its life span. Autogenous healing concrete is a type of self-healing concrete that can automatically heal cracks based on physical or chemical reactions in concrete matrix. It is imperative to investigate the healing performance that autogenous healing concrete possesses, to assess the extent of the cracking and to predict the extent of healing. In the research of self-healing concrete, testing the healing performance of concrete in a laboratory is costly, and a mass of instances may be needed to explore reliable concrete design. This study is thus the world’s first to establish six types of machine learning algorithms, which are capable of predicting the healing performance (HP) of self-healing concrete. These algorithms involve an artificial neural network (ANN), a k-nearest neighbours (kNN), a gradient boosting regression (GBR), a decision tree regression (DTR), a support vector regression (SVR) and a random forest (RF). Parameters of these algorithms are tuned utilising grid search algorithm (GSA) and genetic algorithm (GA). The prediction performance indicated by coefficient of determination (R2) and root mean square error (RMSE) measures of these algorithms are evaluated on the basis of 1417 data sets from the open literature. The results show that GSA-GBR performs higher prediction performance (R2GSA-GBR = 0.958) and stronger robustness (RMSEGSA-GBR = 0.202) than the other five types of algorithms employed to predict the healing performance of autogenous healing concrete. Therefore, reliable prediction accuracy of the healing performance and efficient assistance on the design of autogenous healing concrete can be achieved.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Abolfazl Mohammadbeigi ◽  
Salman Khazaei ◽  
Hamidreza Heidari ◽  
Azadeh Asgarian ◽  
Shahram Arsangjang ◽  
...  

AbstractObjectivesLeishmaniasis is a neglected and widespread parasitic disease that can lead to serious health problems. The current review study aimed to synthesize the relationship between ecologic and environmental factors (e.g., weather conditions, climatology, temperature and topology) and the incidence of cutaneous leishmaniasis (CL) in the Old World.ContentA systematic review was conducted based on English, and Persian articles published from 2015 to 2020 in PubMed/Medline, Science Direct, Web of Science and Google Scholar. Keywords used to search articles were leishmaniasis, environmental factors, weather condition, soil, temperature, land cover, ecologic* and topogr*. All articles were selected and assessed for eligibility according to the titles or abstracts. The quality screening process of articles was carried out by two independent authors. The selected articles were checked according to the inclusion and exclusion criteria.Summary and outlookA total of 827 relevant records in 2015–2020 were searched and after evaluating the articles, 23 articles met the eligibility criteria; finally, 14 full-text articles were included in the systematic review. Two different categories of ecologic/environmental factors (weather conditions, temperature, rainfall/precipitation and humidity) and land characteristics (land cover, slope, elevation and altitude, earthquake and cattle sheds) were the most important factors associated with CL incidence.ConclusionsTemperature and rainfall play an important role in the seasonal cycle of CL as many CL cases occurred in arid and semiarid areas in the Old World. Moreover, given the findings of this study regarding the effect of weather conditions on CL, it can be concluded that designing an early warning system is necessary to predict the incidence of CL based on different weather conditions.


Author(s):  
Natalie Rose ◽  
Les Dolega

AbstractThe weather is considered as an influential factor on consumer purchasing behaviours and plays a significant role in many aspects of retail sector decision making. As a result, better understanding of the magnitude and nature of the influence of variable UK weather conditions can be beneficial to many retailers and other stakeholders. This study addresses the dearth of research in this area by quantifying the relationship between different weather conditions and trading outcomes. By employing comprehensive daily sales data for a major high street retailer with over 2000 stores across England and adopting a random forest methodology, the study quantifies the influence of various weather conditions on daily retail sales. Results indicate that weather impact is greatest in the summer and spring months and that wind is consistently found to be the most influential weather condition. The top five most weather-dependent categories cover a range of different product types, with health foods emerging as the most susceptible to the weather. Also, sales from out-of-town stores show a far more complex relationship with the weather than those from traditional high street stores with the regions London and the South East experiencing the greatest levels of influence. Various implications of these findings for retail stakeholders are discussed and the scope for further research outlined.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 843
Author(s):  
Jiaqi Tian ◽  
Chunsheng Fang ◽  
Jiaxin Qiu ◽  
Ju Wang

The increase in tropospheric ozone (O3) concentration has become one of the factors restricting urban development. This paper selected the important economic cooperation areas in Northeast China as the research object and collected the hourly monitoring data of pollutants and meteorological data in 11 cities from 1 January 2015 to 31 December 2019. The temporal and spatial variation trend of O3 concentration and the effects of meteorological factors and other pollutants, including CO (carbon monoxide), SO2 (sulfur dioxide), NO2 (nitrogen dioxide), and PM2.5 and PM10 (PM particles with aerodynamic diameters less than 2.5 μm and 10 μm) on ozone concentration were analyzed. At the same time, the variation period of O3 concentration was further analyzed by Morlet wavelet analysis. The results showed that the O3 pollution in the study area had a significant spatial correlation. The spatial distribution showed that the O3 concentration was relatively high in the south and low in the northeast. Seasonally, the O3 concentration was the highest in spring, followed by summer, and the lowest in winter. The diurnal variation of O3 concentration presented a “single peak” pattern. O3 concentration had a significant positive correlation with temperature, sunshine duration, and wind speed and a significant anticorrelation with CO, NO2, SO2, and PM2.5 concentration. Under the time scale of a = 9, 23, O3 had significant periodic fluctuation, which was similar to those of wind speed and temperature.


2020 ◽  
Vol 12 (6) ◽  
pp. 2467 ◽  
Author(s):  
Fei Zhao ◽  
Yihan Gao ◽  
Tengyuan Wang ◽  
Jinsha Yuan ◽  
Xiaoxia Gao

To study the wake development characteristics of wind farms in complex terrains, two different types of Light Detection and Ranging (LiDAR) were used to conduct the field measurements in a mountain wind farm in Hebei Province, China. Under two different incoming wake conditions, the influence of wind shear, terrain and incoming wind characteristics on the development trend of wake was analyzed. The results showed that the existence of wind shear effect causes asymmetric distribution of wind speed in the wake region. The relief of the terrain behind the turbine indicated a subsidence of the wake centerline, which had a linear relationship with the topography altitudes. The wake recovery rates were calculated, which comprehensively validated the conclusion that the wake recovery rate is determined by both the incoming wind turbulence intensity in the wake and the magnitude of the wind speed.


2012 ◽  
Vol 610-613 ◽  
pp. 1033-1040
Author(s):  
Wei Dai ◽  
Jia Qi Gao ◽  
Bo Wang ◽  
Feng Ouyang

Effects of weather conditions including temperature, relative humidity, wind speed, wind and direction on PM2.5 were studied using statistical methods. PM2.5 samples were collected during the summer and the winter in a suburb of Shenzhen. Then, correlations, hypothesis test and statistical distribution of PM2.5 and meteorological data were analyzed with IBM SPSS predictive analytics software. Seasonal and daily variations of PM2.5 have been found and these mainly resulted from the weather effects.


Sign in / Sign up

Export Citation Format

Share Document