scholarly journals Creating a Disaster Chain Diagram from Japanese Newspaper Articles Using Mechanical Methods

Author(s):  
Fumihiro Sakahira ◽  
U Hiroi ◽  
◽  

A new method for creating a chain diagram of events that occur during disasters by extracting causal knowledge from Japanese newspaper articles and designing a causal network is proposed herein. Machine learning discriminant models were created for both conventional cue phrases and succession expressions with causation to extract causal sentences. We found that causal sentences can be extracted with a certain degree of accuracy from disaster articles. We were also able to create a causal network using sentences as nodes and links. The chain diagram using our new method extracted events and causal knowledge that were unavailable in a disaster chain diagram designed using conventional methods.

Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2764
Author(s):  
Xin Yu Liew ◽  
Nazia Hameed ◽  
Jeremie Clos

A computer-aided diagnosis (CAD) expert system is a powerful tool to efficiently assist a pathologist in achieving an early diagnosis of breast cancer. This process identifies the presence of cancer in breast tissue samples and the distinct type of cancer stages. In a standard CAD system, the main process involves image pre-processing, segmentation, feature extraction, feature selection, classification, and performance evaluation. In this review paper, we reviewed the existing state-of-the-art machine learning approaches applied at each stage involving conventional methods and deep learning methods, the comparisons within methods, and we provide technical details with advantages and disadvantages. The aims are to investigate the impact of CAD systems using histopathology images, investigate deep learning methods that outperform conventional methods, and provide a summary for future researchers to analyse and improve the existing techniques used. Lastly, we will discuss the research gaps of existing machine learning approaches for implementation and propose future direction guidelines for upcoming researchers.


2001 ◽  
Vol 16 (6) ◽  
pp. 1660-1667 ◽  
Author(s):  
L. Riester ◽  
T. J. Bell ◽  
A. C. Fischer-Cripps

The present work shows how data obtained in a depth-sensing indentation test using a Knoop indenter may be analyzed to provide elastic modulus and hardness of the specimen material. The method takes into account the elastic recovery along the direction of the short axis of the residual impression as the indenter is removed. If elastic recovery is not accounted for, the elastic modulus and hardness are overestimated by an amount that depends on the ratio of E/H of the specimen material. The new method of analysis expresses the elastic recovery of the short diagonal of the residual impression into an equivalent face angle for one side of the Knoop indenter. Conventional methods of analysis using this corrected angle provide results for modulus and hardness that are consistent with those obtained with other types of indenters.


2021 ◽  
Author(s):  
Hussain AlBahrani ◽  
Nobuo Morita

Abstract In many drilling scenarios that include deep wells and highly stressed environments, the mud weight required to completely prevent wellbore instability can be impractically high. In such cases, what is known as risk-controlled wellbore stability criterion is introduced. This criterion allows for a certain level of wellbore instability to take place. This means that the mud weight calculated using this criterion will only constrain wellbore instability to a certain manageable level, hence the name risk-controlled. Conventionally, the allowable level of wellbore instability in this type of models has always been based on the magnitude of the breakout angle. However, wellbore enlargements, as seen in calipers and image logs, can be highly irregular in terms of its distribution around the wellbore. This irregularity means that risk-controlling the wellbore instability through the breakout angle might not be always sufficient. Instead, the total volume of cavings is introduced as the risk control parameter for wellbore instability. Unlike the breakout angle, the total volume of cavings can be coupled with a suitable hydraulics model to determine the threshold of manageable instability. The expected total volume of cavings is determined using a machine learning (ML) assisted 3D elasto-plastic finite element model (FEM). The FEM works to model the interval of interest, which eventually provides a description of the stress distribution around the wellbore. The ML algorithm works to learn the patterns and limits of rock failure in a supervised training manner based on the wellbore enlargement seen in calipers and image logs from nearby offset wells. Combing the FEM output with the ML algorithm leads to an accurate prediction of shear failure zones. The model is able to predict both the radial and circumferential distribution of enlargements at any mud weight and stress regime, which leads to a determination of the expected total volume of cavings. The model implementation is first validated through experimental data. The experimental data is based on true-triaxial tests of bored core samples. Next, a full dataset from offset wells is used to populate and train the model. The trained model is then used to produce estimations of risk-controlled stability mud weights for different drilling scenarios. The model results are compared against those produced by conventional methods. Finally, both the FEM-ML model and the conventional methods results are compared against the drilling experience of the offset wells. This methodology provides a more comprehensive and new solution to risk controlling wellbore instability. It relies on a novel process which learns rock failure from calipers and image logs.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Haoran Zhu ◽  
Lei Lei

PurposePrevious research concerning automatic extraction of research topics mostly used rule-based or topic modeling methods, which were challenged due to the limited rules, the interpretability issue and the heavy dependence on human judgment. This study aims to address these issues with the proposal of a new method that integrates machine learning models with linguistic features for the identification of research topics.Design/methodology/approachFirst, dependency relations were used to extract noun phrases from research article texts. Second, the extracted noun phrases were classified into topics and non-topics via machine learning models and linguistic and bibliometric features. Lastly, a trend analysis was performed to identify hot research topics, i.e. topics with increasing popularity.FindingsThe new method was experimented on a large dataset of COVID-19 research articles and achieved satisfactory results in terms of f-measures, accuracy and AUC values. Hot topics of COVID-19 research were also detected based on the classification results.Originality/valueThis study demonstrates that information retrieval methods can help researchers gain a better understanding of the latest trends in both COVID-19 and other research areas. The findings are significant to both researchers and policymakers.


Sign in / Sign up

Export Citation Format

Share Document