Tsunami Fragility — A New Measure to Identify Tsunami Damage —

2009 ◽  
Vol 4 (6) ◽  
pp. 479-488 ◽  
Author(s):  
Shunichi Koshimura ◽  
◽  
Yuichi Namegaya ◽  
Hideaki Yanagisawa ◽  
◽  
...  

Tsunami fragility (fragility curve, or fragility function) is a new measure, we propose, for estimating structural damage and fatalities due to tsunami attack, by integrating satellite remote sensing, field survey, numerical modeling, and historical data analysis with geographic information system (GIS). Tsunami fragility is expressed as the structural damage probability or fatality ratio related to hydrodynamic features of tsunami inundation flow, such as inundation depth, current velocity and hydrodynamic force. It expands the capability of estimating potential tsunami damage in a quantitative manner.

2017 ◽  
Vol 12 (1) ◽  
pp. 131-136 ◽  
Author(s):  
Yoshihisa Maruyama ◽  
◽  
Osamu Itagaki

In exploring the relationship between ground-level road damage ratios and tsunami inundation depths following the 2011 Pacific Coast Tohoku earthquake in Japan, we focused on road damage components, excluding elevated roads, bridges, and tunnels. The damage ratio is defined as the number of damage incidents per kilometer. We used the damage dataset compiled by the Japanese Ministry of Land, Infrastructure and Transport. We propose four fragility function zones for ground-level roads based on differences in topographical features. We studied these zones based on numerical simulation results of tsunami propagation.


2014 ◽  
Vol 9 (6) ◽  
pp. 968-975 ◽  
Author(s):  
Bruno Adriano ◽  
◽  
Erick Mas ◽  
Shunichi Koshimura ◽  
Miguel Estrada ◽  
...  

The implementation of adequate urban development and measures systems against tsunami impact in coastal communities is improved by understanding damage probability among building structures. Within the framework of the project Enhancement of Earthquake and Tsunami Disaster Mitigation Technology in Peru (JST-JICA SATREPS), the authors analyze the damage probability of building structures due to tsunami impact in the Callao region of Peru. Two different tsunami hazard scenarios are assumed in assessing building damage probability. The first tsunami scenario represents the worse-case scenario of tsunami inundation that calculates the envelop of maximum inundation depth and flow velocity values from 12 probabilistic megathrust earthquake scenarios for central Peru. The second tsunami scenario corresponds to a historical tsunami event in this region. We apply a methodology for evaluating different levels of building damage by combining tsunami numerical results and tsunami fragility functions. Damage probability was analyzed in detail on a single building scale in the La Punta district. For the rest of Callao region, analysis was performed on a block-unit scale. Our results suggest that approximately 30% of submerged building may be washed away by tsunami inundation in the probabilistic hazard scenario and approximately 60% in the historical hazard scenario.


2011 ◽  
Vol 11 (1) ◽  
pp. 173-189 ◽  
Author(s):  
A. Suppasri ◽  
S. Koshimura ◽  
F. Imamura

Abstract. The 2004 Indian Ocean tsunami damaged and destroyed numerous buildings and houses in Thailand. Estimation of tsunami impact to buildings from this event and evaluation of the potential risks are important but still in progress. The tsunami fragility curve is a function used to estimate the structural fragility against tsunami hazards. This study was undertaken to develop fragility curves using visual inspection of high-resolution satellite images (IKONOS) taken before and after tsunami events to classify whether the buildings were destroyed or not based on the remaining roof. Then, a tsunami inundation model is created to reconstruct the tsunami features such as inundation depth, current velocity, and hydrodynamic force of the event. It is assumed that the fragility curves are expressed as normal or lognormal distribution functions and the estimation of the median and log-standard deviation is performed using least square fitting. From the results, the developed fragility curves for different types of building materials (mixed type, reinforced concrete and wood) show consistent performance in damage probability and when compared to the existing curves for other locations.


2004 ◽  
pp. 729-733
Author(s):  
Mengkai Zhang ◽  
Zhixiang Tan ◽  
Guangli Guo ◽  
Kazhong Deng

2022 ◽  
Vol 12 (2) ◽  
pp. 858
Author(s):  
Kentaro Imai ◽  
Takashi Hashimoto ◽  
Yuta Mitobe ◽  
Tatsuo Masuta ◽  
Narumi Takahashi ◽  
...  

Tsunami-related fires may occur in the inundation area during a huge tsunami disaster, and woody debris produced by the tsunami can cause the fires to spread. To establish a practical method for evaluating tsunami-related fire predictions, we previously developed a method for evaluating the tsunami debris thickness distribution that uses tsunami computation results and static parameters for tsunami numerical analysis. We then used this evaluation method to successfully reproduce the tsunami debris accumulation trend. We then developed an empirical building fragility function that relates the production of debris not only to inundation depth but also to the topographic gradient and the proportion of robust buildings. Using these empirical evaluation models, along with conventional tsunami numerical analysis data, we carried out a practical tsunami debris prediction for Owase City, Mie Prefecture, a potential disaster area for a Nankai Trough mega-earthquake. This prediction analysis method can reveal hazards which go undetected by a conventional tsunami inundation analysis. These results indicate that it is insufficient to characterize the tsunami hazard by inundation area and inundation depth alone when predicting the hazard of a huge tsunami; moreover, more practically, it is necessary to predict the hazard based on the effect of tsunami debris.


2006 ◽  
Vol 1 (1) ◽  
pp. 148-156 ◽  
Author(s):  
Tetsuya Hiraishi ◽  
◽  
Tomohiro Yasuda ◽  

The population and property in urban areas facing waterfronts is rapidly increasing together with the probability that a huge tsunami will occur on the Pacific Rim. The huge potential damage reflects the need to develop a highly accurate simulation model for tsunami inundation to help mitigate tsunami effects. We developed a simulation model to estimate the inundation depth and speed of tsunamis in urban areas. The model was applied to calculate the vari- ation of inundation areas in a model city facing Tokyo Bay. Experiments of tsunami inundation in the model city on a 1/50 scale was carried out for validation of the numerical model.


2012 ◽  
Vol 12 (8) ◽  
pp. 2689-2697 ◽  
Author(s):  
E. Mas ◽  
S. Koshimura ◽  
A. Suppasri ◽  
M. Matsuoka ◽  
M. Matsuyama ◽  
...  

Abstract. On 27 February 2010, a megathrust earthquake of Mw = 8.8 generated a destructive tsunami in Chile. It struck not only Chilean coast but propagated all the way to Japan. After the event occurred, the post-tsunami survey team was assembled, funded by the Japan Science and Technology Agency (JST), to survey the area severely affected by the tsunami. The tsunami damaged and destroyed numerous houses, especially in the town of Dichato. In order to estimate the structural fragility against tsunami hazard in this area, tsunami fragility curves were developed. Surveyed data of inundation depth and visual inspection of satellite images of Dichato were used to classify the damage to housing. A practical method suitable when there are limitations on available data for numerical simulation or damage evaluation from surveys is presented here. This study is the first application of tsunami fragility curves on the South American Pacific coast and it might be of practical use for communities with similar characteristics along the west Pacific coast. The proposed curve suggests that structures in Dichato will be severely damaged – with a 68% probability – already at 2 m tsunami inundation depth.


2020 ◽  
Vol 177 (8) ◽  
pp. 3545-3562 ◽  
Author(s):  
James H. Williams ◽  
Ryan Paulik ◽  
Thomas M. Wilson ◽  
Liam Wotherspoon ◽  
Andi Rusdin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document