Scenarios of Earthquake and Tsunami Damage Probability in Callao Region, Peru Using Tsunami Fragility Functions

2014 ◽  
Vol 9 (6) ◽  
pp. 968-975 ◽  
Author(s):  
Bruno Adriano ◽  
◽  
Erick Mas ◽  
Shunichi Koshimura ◽  
Miguel Estrada ◽  
...  

The implementation of adequate urban development and measures systems against tsunami impact in coastal communities is improved by understanding damage probability among building structures. Within the framework of the project Enhancement of Earthquake and Tsunami Disaster Mitigation Technology in Peru (JST-JICA SATREPS), the authors analyze the damage probability of building structures due to tsunami impact in the Callao region of Peru. Two different tsunami hazard scenarios are assumed in assessing building damage probability. The first tsunami scenario represents the worse-case scenario of tsunami inundation that calculates the envelop of maximum inundation depth and flow velocity values from 12 probabilistic megathrust earthquake scenarios for central Peru. The second tsunami scenario corresponds to a historical tsunami event in this region. We apply a methodology for evaluating different levels of building damage by combining tsunami numerical results and tsunami fragility functions. Damage probability was analyzed in detail on a single building scale in the La Punta district. For the rest of Callao region, analysis was performed on a block-unit scale. Our results suggest that approximately 30% of submerged building may be washed away by tsunami inundation in the probabilistic hazard scenario and approximately 60% in the historical hazard scenario.

2014 ◽  
Vol 2 (1) ◽  
pp. 1-25
Author(s):  
H. Gokon ◽  
S. Koshimura ◽  
K. Imai ◽  
M. Matsuoka ◽  
Y. Namegaya ◽  
...  

Abstract. Fragility functions in terms of flow depth, flow velocity and hydrodynamic force are developed to evaluate structural vulnerability in the areas affected by the 2009 Samoa earthquake and tsunami. First, numerical simulations of tsunami propagation and inundation are conducted to reproduce the features of tsunami inundation. To validate the results, flow depths measured in field surveys and waveforms measured by Deep-ocean Assessment and Reporting of Tsunamis (DART) gauges are utilized. Next, building damage is investigated by manually detecting changes between pre- and post-tsunami high-resolution satellite images. Finally, the data related to tsunami features and building damage are integrated using GIS, and tsunami fragility functions are developed based on the statistical analyses.


2014 ◽  
Vol 14 (12) ◽  
pp. 3231-3241 ◽  
Author(s):  
H. Gokon ◽  
S. Koshimura ◽  
K. Imai ◽  
M. Matsuoka ◽  
Y. Namegaya ◽  
...  

Abstract. Fragility functions in terms of flow depth, flow velocity and hydrodynamic force are developed to evaluate structural vulnerability in the areas affected by the 2009 Samoa earthquake and tsunami. First, numerical simulations of tsunami propagation and inundation are conducted to reproduce the features of tsunami inundation. To validate the results, flow depths measured in field surveys and waveforms measured by Deep-ocean Assessment and Reporting of Tsunamis (DART) gauges are utilized. Next, building damage is investigated by visually interpreting changes between pre- and post-tsunami high-resolution satellite images. Finally, the data related to tsunami features and building damage are integrated using Geographic Information System (GIS), and tsunami fragility functions are developed based on the statistical analyses. From the developed fragility functions, we quantitatively understood the vulnerability of a coastal region in American Samoa characterized by steep terrains and ria coasts.


2009 ◽  
Vol 4 (6) ◽  
pp. 479-488 ◽  
Author(s):  
Shunichi Koshimura ◽  
◽  
Yuichi Namegaya ◽  
Hideaki Yanagisawa ◽  
◽  
...  

Tsunami fragility (fragility curve, or fragility function) is a new measure, we propose, for estimating structural damage and fatalities due to tsunami attack, by integrating satellite remote sensing, field survey, numerical modeling, and historical data analysis with geographic information system (GIS). Tsunami fragility is expressed as the structural damage probability or fatality ratio related to hydrodynamic features of tsunami inundation flow, such as inundation depth, current velocity and hydrodynamic force. It expands the capability of estimating potential tsunami damage in a quantitative manner.


2017 ◽  
Vol 12 (1) ◽  
pp. 131-136 ◽  
Author(s):  
Yoshihisa Maruyama ◽  
◽  
Osamu Itagaki

In exploring the relationship between ground-level road damage ratios and tsunami inundation depths following the 2011 Pacific Coast Tohoku earthquake in Japan, we focused on road damage components, excluding elevated roads, bridges, and tunnels. The damage ratio is defined as the number of damage incidents per kilometer. We used the damage dataset compiled by the Japanese Ministry of Land, Infrastructure and Transport. We propose four fragility function zones for ground-level roads based on differences in topographical features. We studied these zones based on numerical simulation results of tsunami propagation.


2019 ◽  
Vol 13 (02) ◽  
pp. 1950008 ◽  
Author(s):  
M. Capozzo ◽  
A. Rizzi ◽  
G. P. Cimellaro ◽  
M. Domaneschi ◽  
A. Barbosa ◽  
...  

It has been observed in different parts of the world that offshore earthquakes occurred in coastal regions were followed by tsunamis and catastrophic damages due to cascading effects. In this paper, an innovative methodology for the estimation of direct damage losses and resilience for a given community is presented. It combines two existent methodologies, including both earthquake and tsunami hazards. In detail, fragility functions related to earthquake intensity, ground failure and tsunami inundation are combined with regional hazard data to estimate damages and direct economic losses of buildings and bridges. The coastal city of Seaside in Oregon has been used as a case study and as one of the most vulnerable town in the Pacific North United States due to the proximity of a nearfield Cascadia Subduction Zone. The results indicate that, when the earthquake and the subsequent tsunami inundation are considered together, there is an overwhelming increase in the loss estimates in comparison to the case when the tsunami is separately considered.


2020 ◽  
Vol 177 (8) ◽  
pp. 3545-3562 ◽  
Author(s):  
James H. Williams ◽  
Ryan Paulik ◽  
Thomas M. Wilson ◽  
Liam Wotherspoon ◽  
Andi Rusdin ◽  
...  

2018 ◽  
Author(s):  
Dipendra Gautam ◽  
Hugo Rodrigues

Abstract. This paper reports the seismic vulnerability of vernacular Newari buildings based on the damage observations during four major earthquakes (1934, 1988, 2011 and 2015) that struck Bhaktapur city. Some specific features that contributed to collapse prevention in traditional masonry buildings are also highlighted in this paper. In this paper, we have outlined the insights of each earthquake using forensic interpretations and the recommendations by various researchers after 1934 and 1988 earthquakes are compared in terms of their implementation. With the help of damage database recorded during 1934, 1988 and 2015 earthquakes, we have created damage probability matrices and empirical fragility functions for traditional masonry structures. The fragility functions and damage probability matrices derived in this study highlight that most of the vernacular Newari buildings are likely to be collapsed in the case of strong to major earthquakes.


2009 ◽  
Vol 15 (1) ◽  
pp. 95-104 ◽  
Author(s):  
Egidijus R. Vaidogas ◽  
Virmantas Juocevičius

An application of fragility functions to the assessment of potential damage due to an accidental action is analysed. The assessment is carried out as an estimation of the probability of a foreseeable damage event (damage probability). This probability is expressed as a mean value of a fragility function developed for the damage event under study. A Bayesian prior (posterior) distribution specified for this mean value is used as an estimate of the damage probability. The prior distribution is derived by transforming prior knowledge through the fragility function and “mapping” this knowledge on the scale of probability values. The technique of Bayesian bootstrap resampling is applied to update the prior distribution. The new information used for the updating consists of a relatively small number of experimental observations of the accidental action. To facilitate the updating, these observations are transformed into a fictitious statistical sample of fragility function values. The updating is first carried out with a fragility function which expresses aleatory uncertainty only. Then it is proposed how to perform the updating with the fragility function which quantifies both aleatory and epistemic uncertainty. This is done by discretising continuous distributions of the epistemic uncertainty related to values (parameters) of the fragility function. The proposed approach allows to utilise different sources of information for the damage assessment. A potential field of application of this approach is risk studies of hazardous industrial facilities. Santrauka Analizuojamas pažeidžiamumo funkcijų taikymas vertinant potencialius statybinių konstrukcijų pažeidimus avariniais poveikiais. Vertinimas atliekamas skaičiuojant galimos konstrukcijos pažaidos tikimybę. Ši tikimybė yra išreiškiama vidutine pažeidžiamumo funkcijos reikšme. Ta funkcija yra formuojama analizuojamam pažaidos įvykiui. Apriorinis ir aposteriorinis Bajeso skirstiniai yra taikomi pažaidos tikimybės reikšmei vertinti. Apriorinis skirstinys yra gaunamas pasinaudojant turima informacija apie avarinį poveikį ir transformuojant šią informaciją per pažeidžiamumo funkciją. Aposteriorinis skirstinys yra gaunamas pasitelkiant naują, eksperimentinę informaciją apie avarinį poveikį. Aposterioriniam skirstiniui gauti taikomas kartotinio statistinio ėmimo (būtstrapo) metodas. Naują informaciją sudaro eksperimentiniai avarinio poveikio charakteristikų matavimai, kurie tiksliai atitinka konstrukcijos ekspozicijos tiriamo poveikio situaciją. Apriorinis ir aposteriorinis skirstiniai išreiškia episteminį neapibrėžtumą vertinamos pažaidos tikimybės reikšmės atžvilgiu. Šie skirstiniai yra gaunami taikant tiek pažeidžiamumo funkciją, kuri išreiškia tik stochastinį neapibrėžtumą, tiek funkciją, kurios reikšmės yra neapibrėžtos epistemine prasme. Potenciali siūlomo metodo taikymo sritis yra pavojingų pramoninių objektų rizikos vertinimas.


Sign in / Sign up

Export Citation Format

Share Document