Nationwide 7.5-Arc-Second Japan Engineering Geomorphologic Classification Map and Vs30 Zoning

2013 ◽  
Vol 8 (5) ◽  
pp. 904-911 ◽  
Author(s):  
Kazue Wakamatsu ◽  
◽  
Masashi Matsuoka ◽  

Local geological and ground conditions play important roles in characterizing and estimating hazards in seismic hazard assessment. The authors recently constructed the Japan Engineering Geomorphologic Classification Map (JEGM), which is a systematically standardized GIS-based ground-condition map containing attributes of geomorphologic classification in grid cells of 7.5 arc-seconds in latitude × 11.25 arc-seconds in longitude for Japan nationwide. This paper introduces the concept of developing the 7.5-arc-second JEGM, and presents sample JEGM images. As an example of the database’s application in estimating hazards, the average shear velocity of the ground in the upper 30m, Vs30 is estimated and mapped for Japan nationwide. Other applications being released include seismic hazard maps of Japan, seismic risk analysis by Central Disaster Prevention Council and local governments, and a Quick Estimation System for Earthquake Maps Triggered by Observation Records (QuiQuake).

2019 ◽  
Vol 41 (4) ◽  
pp. 289-304 ◽  
Author(s):  
Paolo Rugarli ◽  
Franco Vaccari ◽  
Giuliano Panza

A fixed increment of magnitude is equivalent to multiply the seismic moment by a factor γEM related to the partial factor γq acting on the seismic moment representing the fault. A comparison is made between the hazard maps obtained with the Neo-Deterministic Seismic Hazard Assessment (NDSHA), using two different approaches: one based on the events magnitude, listed in parametric earthquake catalogues compiled for the study areas, with sources located within the seismogenic zones; the other uses the seismogenic nodes identified by means of pattern recognition techniques applied to morphostructural zonation (MSZ), and increases the reference magnitude by a constant amount tuned by the safety factor γEM.Using γEM=2.0, in most of the territory the two approaches produce totally independent, comparable hazard maps, based on the quite long Italian catalogue. This represents a validation of the seismogenic nodes method and a tuning of the safety factor γEM at about 2.


1997 ◽  
Vol 13 (4) ◽  
pp. 721-737 ◽  
Author(s):  
Robert B. Olshansky

Local-scale seismic hazard maps are an important component of loss estimation because they provide information on possible site effects. This paper evaluates how well seismic hazard maps predicted damage in the Northridge earthquake. Normalizing for residential density, the research found that structures built on several geologic map units shown on pre-1994 hazard maps had significantly more damage than the area-wide average. Specifically, buildings on fine-grained Holocene alluvium, hillside bedrock, and “moderate” and “very high” liquefaction susceptibility zones were 1.5 to 2.5 times more likely to be damaged than the area average. Pipes were four times more likely to break in “very high” liquefaction susceptibility zones than in the area as a whole. The use of hazard maps in loss estimation can help state and local governments to set priorities in managing land use, enforcing building codes, conducting seismic strengthening programs for existing structures, and planning for emergency response and longterm recovery.


2021 ◽  
Author(s):  
Enrico Brandmayr ◽  
Franco Vaccari ◽  
Giuliano Francesco Panza

AbstractThe Corsica-Sardinia lithospheric block is commonly considered as a region of very low seismicity and the scarce reported seismicity for the area has till now precluded the reliable assessment of its seismic hazard. The time-honored assumption has been recently questioned and the historical seismicity of Sardinia has been reevaluated. Even more, several seismogenic nodes capable of M5 + have been recognized in the Corsica-Sardinia block exploiting the morphostructural zonation technique, calibrated to earlier results obtained for the Iberian peninsula, which has structural lithospheric affinities with the Corsica-Sardinia block. All this allows now for the computation of reliable earthquake hazard maps at bedrock conditions exploiting the power of Neo Deterministic Seismic Hazard Assessment (NDSHA) evaluation. NDSHA relies upon the fundamental physics of wave generation and propagation in complex geologic structures and generates realistic time series from which several earthquake ground motion parameters can be readily extracted. NDSHA exploits in an optimized way all the available knowledge about lithospheric mechanical parameters, seismic history, seismogenic zones and nodes. In accordance with continuum mechanics, the tensor nature of earthquake ground motion is preserved computing realistic signals using structural models obtained by tomographic inversion and earthquake source information readily available in literature. The way to this approach has been open by studies focused on continental Italy and Sicily, where the agreement between hazard maps obtained using seismogenic zones, informed by earthquake catalog data, and the maps obtained using only seismogenic nodes are very good.


Author(s):  
Enrico Brandmayr ◽  
Vaccari Franco ◽  
Romanelli Fabio ◽  
Vlahovic Gordana ◽  
Panza Giuliano Francesco

Kosovo is one of the most seismically active regions in Europe, lying within the Alpine-Mediterranean tectonic belt. Historical records for the region show several catastrophic earthquakes with epicentral intensity IX (MCS). However, due to Kosovo’s high population density, high prevalence of traditional construction, and insufficient enforcement of building codes, Kosovo is vulnerable to earthquake damage. In this study, we present earthquake hazard maps for bedrock conditions in Kosovo based on the well-known Neo-deterministic Seismic Hazard Assessment (NDSHA) method. NDSHA relies upon the fundamental physics of wave generation and propagation in complex geologic structures to generate realistic time series, used as input for the computation of several ground motion parameters, integrating the available knowledge of seismic history, seismogenic zones and morphostructural nodes. In accordance with continuum mechanics, the tensor nature of earthquake ground motion is preserved, producing realistic signals using structural models obtained by tomographic inversion and earthquake source information readily available in literature. Our maps are generally consistent with the observed intensity IX (MCS) and suggest that, in some instances, intensity X could be reached.


2020 ◽  
Vol 156 ◽  
pp. 03010
Author(s):  
I Wayan Sengara ◽  
Masyhur Irsyam ◽  
Indra Djati Sidi ◽  
Andri Mulia ◽  
Muhamad Asrurifak ◽  
...  

Indonesia has followed development of new seismic design criteria in the new seismic building codes, from hazard-based in the former SNI-03-1726-2002 to the current risk-based SNI-1726-2012. The major changes in SNI-1726-2012 are using Risk-Targeted Maximum Considered Earthquake (MCER) Spectral Response Acceleration maps. Five years later (2017), the seismic hazard maps have been updated adopting the most recent data and current state of knowledge in probabilistic and deterministic seismic hazard assessment methodologies. To establish the New 2019 Risk Targeted Ground Motion (RTGM) of spectral acceleration (Ss and S1), and risk coefficients (CRS and CR1), for both short (T=0.2s) and 1-second (T=1s) periods, respectively have been developed based on the 2017 Indonesian hazard maps. The RTGM was calculated as the spectral value resulting in 1% probability of building collapse in 50 years through numerical integration of hazard curves and structural capacity. The log-normal standard deviation (?) of the structural capacity envelope has been revised from 0.70 to 0.65. This paper presents the new resulted RTGM maps. Furthermore, the paper also presents revision of seismic amplification factors for 0, 0.2, and 1 second periods (FPGA, Fa, and, Fv) to generate ground surface maximum and design spectra associated with the siteclassifications.


2006 ◽  
Vol 33 (9) ◽  
pp. 1156-1171 ◽  
Author(s):  
H P Hong ◽  
K Goda ◽  
A G Davenport

The quantitative seismic hazard maps for the 1970s National Building Code of Canada were evaluated using the Davenport–Milne method. The Cornell–McGuire method is employed to develop recent seismic hazard maps of Canada. These methods incorporate the information on seismicity, magnitude-recurrence relations, and ground motion (or response) attenuation relations. The former preserves and depends completely on details of the historical seismicity; the latter smoothes the irregular spatial occurrence pattern of the historical seismicity into seismic source zones. Further, the Epicentral Cell method, which attempts to incorporate the preserving and smoothing aspect of these methods, has been developed. However, the impact of the adopted assumptions on the estimated quantitative seismic hazard has not been investigated. This study provides a comparative seismic hazard assessment using the above-mentioned methods and simulation-based algorithms. The analysis results show that overall the Davenport–Milne method gives quasi-circular seismic hazard contours near significant historical events, and the Cornell–McGuire method smoothes the transition of contours. The Epicentral Cell method provides estimates approximately within the former and the latter. Key words: epicentral cell method, probability, seismic hazard, Thiessen polygon, Voronoi, uniform hazard spectra.


2020 ◽  
Vol 91 (5) ◽  
pp. 2631-2650 ◽  
Author(s):  
Leah Salditch ◽  
Molly M. Gallahue ◽  
Madeleine C. Lucas ◽  
James S. Neely ◽  
Susan E. Hough ◽  
...  

Abstract Historical seismic intensity data are useful for myriad reasons, including assessment of the performance of probabilistic seismic hazard assessment (PSHA) models and corresponding hazard maps by comparing their predictions to a dataset of historically observed intensities in the region. To assess PSHA models for California, a long and consistently interpreted intensity record is needed. For this purpose, the California Historical Intensity Mapping Project (CHIMP) has compiled a dataset that combines and reinterprets intensity information that has been stored in disparate and sometimes hard-to-access locations. The CHIMP dataset also includes new observations of intensity from archival research and oral history collection. Version 1 of the dataset includes 46,502 intensity observations for 62 earthquakes with estimated magnitudes ranging from 4.7 to 7.9. The 162 yr of shaking data show observed shaking lower than expected from seismic hazard models. This discrepancy is reduced, but persists, if historical intensity data for the largest earthquakes are smoothed to reduce the effects of spatial undersampling. Possible reasons for this discrepancy include other limitations of the CHIMP dataset, the hazard models, and the possibility that California seismicity throughout the historical period has been lower than the long-term average. Some of these issues may also explain similar discrepancies observed for Italy and Japan.


1998 ◽  
Vol 14 (3) ◽  
pp. 533-556 ◽  
Author(s):  
Christopher J. Wills ◽  
Walter Silva

Site conditions can be classified by the average shear-wave velocity to 30 meters (Vs30) and used for estimating site effects in seismic hazard calculations. Large scale seismic hazard maps, which include site effects, may be produced, providing Vs30 can be well correlated with geologic units. Vs30 values for several geologic units can be easily classified into soil profile types of the UBC (ICBO 1997). Most geologic units have wide variations in Vs30 and some extensive geologic units, such as older alluvium, the Franciscan Complex or the Puente Formation cannot be easily classified.


Sign in / Sign up

Export Citation Format

Share Document