Ground Deformation of Mayon Volcano Revealed by GPS Campaign Survey

2015 ◽  
Vol 10 (1) ◽  
pp. 106-112
Author(s):  
Akimichi Takagi ◽  
◽  
Kenji Fujiwara ◽  
Takahiro Ohkura ◽  
Artemio C. Luis ◽  
...  

Determining the location and the amount of volume change of the pressure source beneath a volcano during the eruption preparation stage is an important issue in monitoring the magma accumulation. To do so, we have implemented a GPS campaign survey network around the Mayon volcano and monitored ground deformation since 2005. Rapid grounddeflating deformation was detected accompanied by the 2009 eruption. The Mogi model pressure source was estimated to be 8.5 km deep beneath the summit and the amount of volume change –13 × 106 m3. In magma accumulation preceding the 2009 eruption, ground deformation showed a weak inflationary trend, but it was difficult to evaluate the source parameters definitively. After the 2009 eruption, no deformation has been detected by the Continuous GPS observation network since 2012. Trend of many baselines of continuous and campaign network turned to extension since 2014. Magma may have started accumulating beneath the Mayon volcano.

Atmosphere ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 104
Author(s):  
Alexandros P. Poulidis ◽  
Atsushi Shimizu ◽  
Haruhisa Nakamichi ◽  
Masato Iguchi

Ground-based remote sensing equipment have the potential to be used for the nowcasting of the tephra hazard from volcanic eruptions. To do so raw data from the equipment first need to be accurately transformed to tephra-related physical quantities. In order to establish these relations for Sakurajima volcano, Japan, we propose a methodology based on high-resolution simulations. An eruption that occurred at Sakurajima on 16 July 2018 is used as the basis of a pilot study. The westwards dispersal of the tephra cloud was ideal for the observation network that has been installed near the volcano. In total, the plume and subsequent tephra cloud were recorded by 2 XMP radars, 1 lidar and 3 optical disdrometers, providing insight on all phases of the eruption, from plume generation to tephra transport away from the volcano. The Weather Research and Forecasting (WRF) and FALL3D models were used to reconstruct the transport and deposition patterns. Simulated airborne tephra concentration and accumulated load were linked, respectively, to lidar backscatter intensity and radar reflectivity. Overall, results highlight the possibility of using such a high-resolution modelling-based methodology as a reliable complementary strategy to common approaches for retrieving tephra-related quantities from remote sensing data.


2021 ◽  
Author(s):  
Figen Eskikoy ◽  
Semih Ergintav ◽  
Uğur Dogan ◽  
Seda Özarpacı ◽  
Alpay Özdemir ◽  
...  

<p>On 2020 October 30, an M<sub>w</sub>6.9 earthquake struck offshore Samos Island. Severe structural damages were observed in Greek Islands and city of Izmir (Turkey). 114 people lost their lives and more than a thousand people were injured in Turkey. The earthquake triggered local tsunami. Significant seismic activity occurred in this region following the earthquake and ~1800 aftershocks (M>1) were recorded by KOERI within the first three days. In this study, we analyze the slip distribution and aftershocks of the 2020 earthquake.</p><p>For the aftershock relocations, the continuous waveforms were collected from NOA, Disaster and Emergency Management Authority of Turkey (AFAD) and KOERI networks. The database   was created based on merged catalogs from AFAD and KOERI. For estimating optimized aftershock location distribution, the P and S phases of the aftershocks are picked manually and relocated with double difference algorithm. In addition, source mechanisms of aftershocks M>4 are obtained from regional body and surface waveforms.</p><p>The surface deformation of the earthquake was obtained from both descending and ascending orbits of the Sentinel-1 A/B and ALOS2 satellites. Since the rupture zone is beneath the Gulf of Kusadası, earthquake related deformation in the interferograms can only be observed on the northern part of the Samos Island. We processed all possible pairs chose the image pairs with the lowest noise level.</p><p>In this study, we used 25 continuous GPS stations which are compiled from TUSAGA-Aktif in Turkey and NOANET in Greece. In addition to continuous GPS data, on 2020 November 1, GPS survey was initiated and the earthquake deformation was measured on 10 GNSS campaign sites (TUTGA), along onshore of Turkey.</p><p>The aim of this study is to estimate the spatial and temporal rupture evolution of the earthquake from geodetic data jointly with near field displacement waveforms. To do so, we use the Bayesian Earthquake Analysis Tool (BEAT).</p><p>As a first step of the study, rectangular source parameters were estimated by using GPS data. In order to estimate the slip distribution, we used both ascending and descending tracks of Sentinel-1 data, ALOS2 and GPS displacements. In our preliminary geodetic data based finite fault model, we used the results of focal mechanism and GPS data inversion solutions for the initial fault plane parameters. The slip distribution results indicate that earthquake rupture is ~35 km long and the maximum slip is ~2 m normal slip along a north dipping fault plane. This EW trending, ~45° north dipping normal faulting system consistent with this tectonic regime in the region. This seismically active area is part of a N-S extensional regime and controlled primarily by normal fault systems.</p><p><strong>Acknowledgements</strong></p><p>This work is supported by the Turkish Directorate of Strategy and Budget under the TAM Project number 2007K12-873.</p>


2020 ◽  
Vol 91 (6) ◽  
pp. 3161-3170
Author(s):  
Xing Li ◽  
Wenbin Xu ◽  
Sigurjón Jónsson ◽  
Yann Klinger ◽  
Guohong Zhang

Abstract Multiple fault segments ruptured during the 2014 Yutian earthquake, but the detailed source parameters and the mechanism of rupture complexity remain poorly understood. Here, we use high-resolution TanDEM-X satellite data and Satellite Pour l’Observation de la Terre-6/7 images to map the coseismic ground deformation field of the event. We find that the majority of coseismic slip occurred in the upper 10 km with the maximum left-lateral fault slip of ∼2.5  m at ∼6  km depth. The fault ruptured across a large 4.5 km extensional stepover from one left-lateral fault segment to another, with some right-lateral relay faulting in between. We find that the earthquake was followed by shallow afterslip concentrating at the southwestern end of coseismic rupture, in an area of many aftershocks and positive Coulomb failure stress change. Our findings demonstrate the power of satellite remote sensing technology in constraining source geometry and slip model of complex earthquakes when ground measurements are limited.


2020 ◽  
Author(s):  
Matthew Head ◽  
James Hickey ◽  
Jo Gottsmann ◽  
Nico Fournier

<p>Episodes of ground deformation, relating to the unrest of a volcanic system, are often readily identifiable within geodetic timeseries (e.g. GPS, InSAR). However, the underlying processes facilitating this deformation are more enigmatic. By modelling the observed deformation signals, the ultimate aim is to infer characteristics of the deforming reservoir; namely the size and time-dependent evolution of the system and, potentially, the fluxes of magma involved. These parameters can be estimated using simple elastic models, but the presence of shallow or long-lived magmatic systems can significantly perturb the local geothermal gradient and invalidate the elastic approximation. Inelastic rheological effects are increasingly utilised to account for these elevated thermal regimes, where a component of viscous (time-dependent) behaviour is expected to characterise the observed deformation field.</p><p>Here, our investigations are concentrated on Taupō volcano, New Zealand, the site of several catastrophic caldera-forming eruptions. We use 3D thermomechanical models of the Lake Taupō region, featuring thermal constraints and heterogeneous crustal properties, to compare the commonly-used Maxwell and Standard Linear Solid (SLS) viscoelastic configurations under contrasting deformation mechanisms; a pressure condition (stress-based) and a volume-change (strain-based). By referring to models allocated a single viscosity value, we investigate the influence of a temperature-dependent viscosity distribution on the predicted spatiotemporal deformation patterns. Comparisons of the overpressure models highlights the influence of the crustal viscosity structure on deformation timescales, by enabling the SLS rheology to account for both abrupt and long-term deformation signals. For the Maxwell rheology, we show that the viscosity distribution results in unexpected deformation patterns, both spatially and temporally, and so query the suitability of this rheology in other model setups. Further to this, the deformation patterns in volume-change models are governed by the resulting stress response, and the effect of the viscosity structure on its propagation. Ultimately, we demonstrate that variations in crustal viscosity greatly influence spatiotemporal deformation patterns, more so than heterogeneous mechanical parameters alone, and consequently have a large impact on the inferences of the underlying processes and their time-dependent evolution. The inclusion of a crustal viscosity structure is therefore an important consideration when modelling volcanic deformation signals.</p>


2011 ◽  
Vol 41 (3) ◽  
pp. 251-265
Author(s):  
Ladislav Brimich ◽  
María Charco ◽  
Igor Kohút ◽  
José Fernández

3D analytical and numerical modelling of the regional topography influence on the surface deformation due to underground heat source Thermo-elastic strains and stresses play a considerable role in the stress state of the lithosphere and its dynamics, especially at pronounced positive geothermal anomalies. Topography has a significant effect on ground deformation. In this paper we describe two methods for including the topographic effects in the thermo-viscoelastic model. First we use an approximate methodology which assumes that the main effect of the topography is due to distance from the source to the free surface and permits to have an analytical solution very attractive for solving the inverse problem. A numerical solution using Finite Element Method (FEM) is also computed. The numerical method allows to include the local shape of the topography in the modelling. In the numerical model the buried magmatic body is represented by a finite volume thermal source. The temperature distribution is computed by the higher-degree FEM. For analytical as well as numerical model solution only the forces of thermal origin are considered. The comparison of the results obtained using both analytical and numerical techniques shows the qualitative agreement of the vertical displacements. In the numerical values small differences were obtained. The results show that for the volcanic areas with an important relief the perturbation of the thermo-viscoelastic solution (deformation and total gravity anomaly) due to the topography can be quite significant. In consequence, neglecting topography could give erroneous results in the estimated source parameters.


2012 ◽  
Vol 7 (1) ◽  
pp. 26-36 ◽  
Author(s):  
Masato Iguchi ◽  
◽  
Surono ◽  
Takeshi Nishimura ◽  
Muhamad Hendrasto ◽  
...  

We report methods, based on geophysical observations and geological surveys, for the prediction of eruptions and the evaluation of the activity of 4 volcanoes in Indonesia. These are Semeru, Guntur, Kelud and Sinabung volcanoes. Minor increases in tilt were detected by borehole tiltmeters prior to eruptions at the Semeru volcano depending on the seismic amplitude of explosion earthquakes. The results show the possibility of prediction of the type and magnitude of eruption and the effectiveness of observation with a high signalto-noise ratio. The establishment of background data is important for evaluating volcanic activity in longterm prediction. Typical distributions of volcanic and local tectonic earthquakes were obtained around the Guntur volcano, where geodetic monitoring by continuous GPS observation is valuable. The cumulative volume of eruptive products is valuable for evaluating the potential for future eruption. The eruptive rate of the Kelud volcano is ca 2×106m3/y (dense rock equivalent), but the volume of the 2007 eruption was only 2×107m3, suggesting a still high potential for eruption. Based on geological surveys and dating, an eruption scenario is proposed for the activity of Mt. Sinabung, where phreatic eruptions occurred in 2010 after a historically long dormancy.


Author(s):  
Gonzalo Agudelo ◽  
Guoquan Wang ◽  
Yuhao Liu ◽  
Yan Bao ◽  
Michael J. Turco

Abstract. Houston, Texas, is one of the earliest urban areas to employ Global Positioning System (GPS) technology for land subsidence and fault monitoring. As of 2020, the University of Houston and the Harris-Galveston Subsidence District have integrated over 230 permanent GPS stations into their routine GPS data processing for regional subsidence and fault monitoring. This article summarizes the GPS geodetic infrastructure in the Greater Houston region. The infrastructure is comprised of two components: a dense GPS network (HoustonNet) and a stable regional reference frame (Houston20). Houston20 is realized by 25 long-history (>8 years) continuous GPS stations located outside the subsiding area and is aligned in origin and scale with the International GNSS Reference Frame 2014 (IGS14). The stability of the regional reference frame is below 1 mm yr−1 in all three directions. GPS-derived ground deformation rates (2010–2019) within the Greater Houston region are also presented in this article.


2021 ◽  
Author(s):  
Adriano Nobile ◽  
Renier Viltres ◽  
Hannes Vasyura-Bathke ◽  
Daniele Trippanera ◽  
Wenbin Wenbin Xu ◽  
...  

<p>We used teleseismic waveforms and ground deformation data from GNSS and InSAR to estimate source fault parameters of the M<sub>w</sub>6.4 earthquake that occurred just offshore southwestern Puerto Rico on 7 January 2020. The mainshock was a part of an energetic seismic sequence that started on 28 December 2019 and led to a M<sub>w</sub>5.8 earthquake on 6 January 2020, a day before the M<sub>w</sub>6.4 mainshock. The ground-shaking due to the largest earthquakes of the sequence caused significant damage to buildings and infrastructures in Puerto Rico and one casualty was reported by the local media. The mainshock was followed by a strong aftershock sequence that included four M<sub>w </sub>≥ 5 events within the first 3 hours. In the first 40 days of the seismic sequence, data from the Puerto Rico Seismic Network were used to locate ~3800 earthquakes of magnitude > 2, illuminating an east-west elongated 30x50 km<sup>2</sup> area, just offshore the southwestern coast of Puerto Rico. The region affected by this activity was before characterized by relatively low seismicity rates, even if a system of active faults, both onshore and offshore, had been mapped. The sequence is peculiar due to its complex development and many large aftershocks (magnitude > 4.5), with the mainshock releasing only  ~60% of the total seismic moment.</p><p>We estimated the key source parameters of the mainshock using teleseismic data, GNSS data from the Puerto Rico Geodetic Network, and InSAR data from the Sentinel-1 and ALOS-2 satellites. The modeled source is consistent with a ~15 km long and ~11 km wide blind fault, oriented roughly east-west and dipping 46<sup>o</sup> towards north, and with up to 1.1 m of oblique normal and left-lateral strike-slip.</p><p>The optimal fault plane source indicates that it is an offshore continuation of the mapped North Boquerón Bay - Punta Montalva fault zone, supported by the large number of the aftershocks that trend along the same direction. However, most of the aftershocks, even those of magnitude > 5, occurred on other nearby faults, highlighting the complexity of this fault zone area.</p>


Sign in / Sign up

Export Citation Format

Share Document