Five-Year Achievements of Volcano Program Promotion Panel

2020 ◽  
Vol 15 (2) ◽  
pp. 106-111
Author(s):  
Takahiro Ohkura ◽  
Kenji Nogami ◽  
◽  

To mitigate a volcanic eruption disaster, it is important to forecast the transition of the disaster, which depends on the stage of the volcanic phenomena, in addition to forecasting the site, scale, and time of the volcanic activities. To make such forecasts, it is critical to elucidate the evolution of volcanic activity. Accordingly, the Volcano Program Promotion Panel has set the prioritized target as “to forecast volcanic eruption as a cause of disaster by clarifying the branching conditions and theories of volcanic activity and improving volcanic event tree.” The panel promoted a five-year study on the elucidation of volcanic phenomena, including low-frequency and large-scale ones, status of volcanic eruption fields, volcanic eruption modeling, observation method development, and observation system improvement. In this paper, an outline of the main results of this five-year study is presented.

2008 ◽  
Vol 3 (4) ◽  
pp. 270-275 ◽  
Author(s):  
Tsuneomi Kagiyama ◽  
◽  
Yuichi Morita ◽  

Caldera forming eruptions are characterized by a large-scale and low frequency. To prepare for them, monitoring of volcanic activity is insufficient for practical evaluation. Volcanic activity generally involves two end members, one in which an eruption dominates and one in which geothermal activity dominates, as defined by the ease in magma ascent. Caldera forming eruptions tend to be prepared where magma stagnates easily. Research on stop of magma ascent and its accumulation is required to understand caldera forming eruptions.


2021 ◽  
Vol 11 (9) ◽  
pp. 3868
Author(s):  
Qiong Wu ◽  
Hairui Zhang ◽  
Jie Lian ◽  
Wei Zhao ◽  
Shijie Zhou ◽  
...  

The energy harvested from the renewable energy has been attracting a great potential as a source of electricity for many years; however, several challenges still exist limiting output performance, such as the package and low frequency of the wave. Here, this paper proposed a bistable vibration system for harvesting low-frequency renewable energy, the bistable vibration model consisting of an inverted cantilever beam with a mass block at the tip in a random wave environment and also develop a vibration energy harvesting system with a piezoelectric element attached to the surface of a cantilever beam. The experiment was carried out by simulating the random wave environment using the experimental equipment. The experiment result showed a mass block’s response vibration was indeed changed from a single stable vibration to a bistable oscillation when a random wave signal and a periodic signal were co-excited. It was shown that stochastic resonance phenomena can be activated reliably using the proposed bistable motion system, and, correspondingly, large-scale bistable responses can be generated to realize effective amplitude enlargement after input signals are received. Furthermore, as an important design factor, the influence of periodic excitation signals on the large-scale bistable motion activity was carefully discussed, and a solid foundation was laid for further practical energy harvesting applications.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1474
Author(s):  
Ruben Tapia-Olvera ◽  
Francisco Beltran-Carbajal ◽  
Antonio Valderrabano-Gonzalez ◽  
Omar Aguilar-Mejia

This proposal is aimed to overcome the problem that arises when diverse regulation devices and controlling strategies are involved in electric power systems regulation design. When new devices are included in electric power system after the topology and regulation goals were defined, a new design stage is generally needed to obtain the desired outputs. Moreover, if the initial design is based on a linearized model around an equilibrium point, the new conditions might degrade the whole performance of the system. Our proposal demonstrates that the power system performance can be guaranteed with one design stage when an adequate adaptive scheme is updating some critic controllers’ gains. For large-scale power systems, this feature is illustrated with the use of time domain simulations, showing the dynamic behavior of the significant variables. The transient response is enhanced in terms of maximum overshoot and settling time. This is demonstrated using the deviation between the behavior of some important variables with StatCom, but without or with PSS. A B-Spline neural networks algorithm is used to define the best controllers’ gains to efficiently attenuate low frequency oscillations when a short circuit event is presented. This strategy avoids the parameters and power system model dependency; only a dataset of typical variable measurements is required to achieve the expected behavior. The inclusion of PSS and StatCom with positive interaction, enhances the dynamic performance of the system while illustrating the ability of the strategy in adding different controllers in only one design stage.


2021 ◽  
Vol 11 (15) ◽  
pp. 6688
Author(s):  
Jesús Romero Leguina ◽  
Ángel Cuevas Rumin ◽  
Rubén Cuevas Rumin

The goal of digital marketing is to connect advertisers with users that are interested in their products. This means serving ads to users, and it could lead to a user receiving hundreds of impressions of the same ad. Consequently, advertisers can define a maximum threshold to the number of impressions a user can receive, referred to as Frequency Cap. However, low frequency caps mean many users are not engaging with the advertiser. By contrast, with high frequency caps, users may receive many ads leading to annoyance and wasting budget. We build a robust and reliable methodology to define the number of ads that should be delivered to different users to maximize the ROAS and reduce the possibility that users get annoyed with the ads’ brand. The methodology uses a novel technique to find the optimal frequency capping based on the number of non-clicked impressions rather than the traditional number of received impressions. This methodology is validated using simulations and large-scale datasets obtained from real ad campaigns data. To sum up, our work proves that it is feasible to address the frequency capping optimization as a business problem, and we provide a framework that can be used to configure efficient frequency capping values.


1998 ◽  
Vol 58 (3) ◽  
pp. 3768-3776 ◽  
Author(s):  
B. Weyssow ◽  
J. D. Reuss ◽  
J. Misguich

2018 ◽  
Vol 22 (6) ◽  
pp. 3105-3124 ◽  
Author(s):  
Zilefac Elvis Asong ◽  
Howard Simon Wheater ◽  
Barrie Bonsal ◽  
Saman Razavi ◽  
Sopan Kurkute

Abstract. Drought is a recurring extreme climate event and among the most costly natural disasters in the world. This is particularly true over Canada, where drought is both a frequent and damaging phenomenon with impacts on regional water resources, agriculture, industry, aquatic ecosystems, and health. However, nationwide drought assessments are currently lacking and impacted by limited ground-based observations. This study provides a comprehensive analysis of historical droughts over the whole of Canada, including the role of large-scale teleconnections. Drought events are characterized by the Standardized Precipitation Evapotranspiration Index (SPEI) over various temporal scales (1, 3, 6, and 12 consecutive months, 6 months from April to September, and 12 months from October to September) applied to different gridded monthly data sets for the period 1950–2013. The Mann–Kendall test, rotated empirical orthogonal function, continuous wavelet transform, and wavelet coherence analyses are used, respectively, to investigate the trend, spatio-temporal patterns, periodicity, and teleconnectivity of drought events. Results indicate that southern (northern) parts of the country experienced significant trends towards drier (wetter) conditions although substantial variability exists. Two spatially well-defined regions with different temporal evolution of droughts were identified – the Canadian Prairies and northern central Canada. The analyses also revealed the presence of a dominant periodicity of between 8 and 32 months in the Prairie region and between 8 and 40 months in the northern central region. These cycles of low-frequency variability are found to be associated principally with the Pacific–North American (PNA) and Multivariate El Niño/Southern Oscillation Index (MEI) relative to other considered large-scale climate indices. This study is the first of its kind to identify dominant periodicities in drought variability over the whole of Canada in terms of when the drought events occur, their duration, and how often they occur.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Weizheng Qu ◽  
Fei Huang ◽  
Jinping Zhao ◽  
Ling Du ◽  
Yong Cao

AbstractThe parasol effect of volcanic dust and aerosol caused by volcanic eruption results in the deepening and strengthening of the Arctic vortex system, thus stimulating or strengthening the Arctic Oscillation (AO). Three of the strongest AOs in more than a century have been linked to volcanic eruptions. Every significant fluctuation of the AO index (AOI = ΔH_middle latitudes − ΔH_Arctic) for many years has been associated with a volcanic eruption. Volcanic activity occurring at different locations in the Arctic vortex circulation will exert different effects on the polar vortex.


2021 ◽  
pp. 17-28
Author(s):  
A. V. Gochakov ◽  
◽  
O. Yu. Antokhina ◽  
V. N. Krupchatnikov ◽  
Yu. V. Martynova ◽  
...  

Many large-scale dynamic phenomena in the Earth’s atmosphere are associated with the processes of propagation and breaking of Rossby waves. A new method for identifying the Rossby wave breaking (RWB) is proposed. It is based on the detection of breakings centers by analyzing the shape of the contours of potential vorticity or temperature on quasimaterial surfaces: isentropic and iserthelic (surfaces of constant Ertel potential vorticity (PV)), with further RWB center clustering to larger regions. The method is applied to the set of constant PV levels (0.3 to 9.8 PVU with a step of 0.5 PVU) at the level of potential temperature of 350 K for 12:00 UTC. The ERA-Interim reanalysis data from 1979 to 2019 are used for the method development. The type of RWB (cyclonic/anticyclonic), its area and center are determined by analyzing the vortex geometry at each PV level for every day. The RWBs obtained at this stage are designated as elementary breakings. Density-Based Spatial Clustering of Applications with Noise algorithm (DBSCAN) was applied to all elementary breakings for each month. As a result, a graphic dataset describing locations and dynamics of RWBs for every month from 1979 to 2019 is formed. The RWB frequency is also evaluated for each longitude, taking into account the duration of each RWB and the number of levels involved, as well as the anomalies of these parameters.


Sign in / Sign up

Export Citation Format

Share Document