scholarly journals Real-Time Slope Stability Analysis Utilizing High-Resolution Gridded Precipitation Datasets Based on Spatial Interpolation of Measurements at Scattered Weather Station

2021 ◽  
Vol 16 (4) ◽  
pp. 561-570
Author(s):  
Nanaha Kitamura ◽  
Akino Watanabe ◽  
Akihiko Wakai ◽  
Takatsugu Ozaki ◽  
Go Sato ◽  
...  

Measuring the amount of rainfall is essential for a wide-area evaluation of the risk of landslide disaster using a real-time simulation. In Thailand, located in Monsoon Asia, point observation is conducted using a rain gauge. Interpolation calculation is crucial for obtaining the planar rainfall intensity for the wide-area analysis from scattered point observation data. In this study, to accurately calculate rainfall intensity using the inverse distance weighting (IDW) method, the parameters affecting the results are examined. Additionally, using obtained rainfall data, a simple prediction calculation of groundwater level fluctuation by Wakai et al. [1] and Ozaki et al. [2] is performed. Finally, the relationship between the rainfall intensity and the fluctuation of groundwater level will be discussed.

Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 592
Author(s):  
Mehdi Aalijahan ◽  
Azra Khosravichenar

The spatial distribution of precipitation is one of the most important climatic variables used in geographic and environmental studies. However, when there is a lack of full coverage of meteorological stations, precipitation estimations are necessary to interpolate precipitation for larger areas. The purpose of this research was to find the best interpolation method for precipitation mapping in the partly densely populated Khorasan Razavi province of northeastern Iran. To achieve this, we compared five methods by applying average precipitation data from 97 rain gauge stations in that province for a period of 20 years (1994–2014): Inverse Distance Weighting, Radial Basis Functions (Completely Regularized Spline, Spline with Tension, Multiquadric, Inverse Multiquadric, Thin Plate Spline), Kriging (Simple, Ordinary, Universal), Co-Kriging (Simple, Ordinary, Universal) with an auxiliary elevation parameter, and non-linear Regression. Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and the Coefficient of Determination (R2) were used to determine the best-performing method of precipitation interpolation. Our study shows that Ordinary Co-Kriging with an auxiliary elevation parameter was the best method for determining the distribution of annual precipitation for this region, showing the highest coefficient of determination of 0.46% between estimated and observed values. Therefore, the application of this method of precipitation mapping would form a mandatory base for regional planning and policy making in the arid to semi-arid Khorasan Razavi province during the future.


2016 ◽  
Vol 11 (2) ◽  
pp. 164-174 ◽  
Author(s):  
Shunichi Koshimura ◽  

A project titled “Establishing the advanced disaster reduction management system by fusion of real-time disaster simulation and big data assimilation,” was launched as Core Research for Evolutional Science and Technology (CREST) by the Japan Science and Technology Agency (JST). Intended to save as many lives as possible in future national crises involving earthquake and tsunami disasters, the project works on a disaster mitigation system of the big data era, based on cooperation of large-scale, high-resolution, real-time numerical simulations and assimilation of real-time observation data. The world’s most advanced specialists in disaster simulation, disaster management, mathematical science, and information science work together to create the world’s first analysis platform for real-time simulation and big data that effectively processes, analyzes, and assimilates data obtained through various observations. Based on quantitative data, the platform designs proactive measures and supports disaster operations immediately after disaster occurrence. The project was launched in 2014 and is working on the following issues at present.Sophistication and fusion of simulations and damage prediction models using observational big data: Development of a real-time simulation core system that predicts the time evolution of disaster effect by assimilating of location information, fire information, and building collapse information which are obtained from mobile terminals, satellite images, aerial images, and other new observation data in addition to sensing data obtained by the undersea high-density seismic observation network.Latent structure analysis and major disaster scenario creation based on a huge amount of simulation results: Development of an analysis and extraction method for the latent structure of a huge amount of disaster scenarios generated by simulation, and creation of severe scenarios with minimum “unexpectedness” by controlling disaster scenario explosion (an explosive increase in the number of predicted scenarios).Establishment of an earthquake and tsunami disaster mitigation big data analysis platform: Development of an earthquake and tsunami disaster mitigation big data analysis platform that realizes analyses of a huge number of disaster scenarios and increases in speed of data assimilation, and clarifies the requirements for operation of the platform as a disaster mitigation system.The project was launched in 2014 as a 5-year project. It consists of element technology development and system fusion, feasibility study as a next-generation disaster mitigation system (validation with/without introduction of the developed real-time simulation and big data analysis platform) in the affected areas of the Great East Japan Earthquake, and test operations in affected areas of the Tokyo metropolitan earthquake and the Nankai Trough earthquake.


Atmosphere ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 496 ◽  
Author(s):  
Ibrahim Seck ◽  
Joël Van Baelen

Optimal Quantitative Precipitation Estimation (QPE) of rainfall is crucial to the accuracy of hydrological models, especially over urban catchments. Small-to-medium size towns are often equipped with sparse rain gauge networks that struggle to capture the variability in rainfall over high spatiotemporal resolutions. X-band Local Area Weather Radars (LAWRs) provide a cost-effective solution to meet this challenge. The Clermont Auvergne metropolis monitors precipitation through a network of 13 rain gauges with a temporal resolution of 5 min. 5 additional rain gauges with a 6-minute temporal resolution are available in the region, and are operated by the national weather service Météo-France. The LaMP (Laboratoire de Météorologie Physique) laboratory’s X-band single-polarized weather radar monitors precipitation as well in the region. In this study, three geostatistical interpolation techniques—Ordinary kriging (OK), which was applied to rain gauge data with a variogram inferred from radar data, conditional merging (CM), and kriging with an external drift (KED)—are evaluated and compared through cross-validation. The performance of the inverse distance weighting interpolation technique (IDW), which was applied to rain gauge data only, was investigated as well, in order to evaluate the effect of incorporating radar data on the QPE’s quality. The dataset is comprised of rainfall events that occurred during the seasons of summer 2013 and winter 2015, and is exploited at three temporal resolutions: 5, 30, and 60 min. The investigation of the interpolation techniques performances is carried out for both seasons and for the three temporal resolutions using raw radar data, radar data corrected from attenuation, and the mean field bias, successively. The superiority of the geostatistical techniques compared to the inverse distance weighting method was verified with an average relative improvement of 54% and 31% in terms of bias reduction for kriging with an external drift and conditional merging, respectively (cross-validation). KED and OK performed similarly well, while CM lagged behind in terms of point measurement QPE accuracy, but was the best method in terms of preserving the observations’ variance. The correction schemes had mixed effects on the multivariate geostatistical methods. Indeed, while the attenuation correction improved KED across the board, the mean field bias correction effects were marginal. Both radar data correction schemes resulted in a decrease of the ability of CM to preserve the observations variance, while slightly improving its point measurement QPE accuracy.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Ahmet Irvem ◽  
Mustafa Ozbuldu

Use of the satellite and reanalysis precipitation products, as supplementary data sources, are steadily rising for hydrometeorological applications, especially in data-sparse areas. However, the accuracy of these data sets is often lacking, especially in Turkey. This study evaluates the accuracy of satellite precipitation product (TRMM 3B42V7) and reanalysis precipitation product (NCEP-CFSR) against rain gauge observations for the 1998–2010 periods. Average annual precipitation for the 25 basins in Turkey was calculated using rain gauge precipitation data from 225 stations. The inverse distance weighting (IDW) method was used to calculate areal precipitation for each basin using GIS. According to the results of statistical analysis, the coefficient of determination for the TRMM product gave satisfactory results (R2 > 0.88). However, R2 for the CFSR data set ranges from 0.35 for the Eastern Black Sea basin to 0.93 for the West Mediterranean basin. RMSE was calculated to be 95.679 mm and 128.097 mm for the TRMM and CFSR data, respectively. The NSE results of TRMM data showed very good performance for 6 basins, while the PBias value showed very good performance for 7 basins. The NSE results of CFSR data showed very good performance for 3 basins, while the PBias value showed very good performance for 6 basins.


2021 ◽  
Author(s):  
Michelle García-Arroyo ◽  
Miguel A. Gómez-Martínez ◽  
Ian MacGregor-Fors

AbstractThe Eurasian Collared-Dove (Streptopelia decaocto) is one of the most successful invasive bird species across the world. Worryingly, the invasive dove is a known reservoir of many diseases, some of which can potentially infect mammals (including human beings). Additionally, aggressive behaviors have been recorded toward other bird species resulting in territory and nest usurpation. Thus, the presence of this species poses an important risk for native species with similar habits, particularly in insular systems. Based on this, we carried out this study to assess the density and distribution of the Eurasian Collared-Dove in the island of Cozumel, as well as to evaluate the relationship between their abundance and the environmental characteristics of the places they inhabit. We estimated their distance-corrected densities in the island's largest town and performed an inverse distance weighting (IDW) interpolation to visualize their distribution. We performed a generalized linear model (GLM) to assess relationships between the environmental variables and the abundance of doves using a reduced model procedure. We obtained 137 records of doves present in 94% of all survey sites and an estimated density of 6.8 ind/ha, for a total of 6,670 doves in San Miguel de Cozumel. We did not find a spatial pattern of the dove's distribution on the urban setting, but we found an interaction between their abundances with tree cover and building height. Our findings, together with previous evidence of infection risk and aggressive behavior, make this species a threat to the native species communities of fragile ecosystems such as the island of Cozumel.


2018 ◽  
Vol 22 (5) ◽  
pp. 1179-1204 ◽  
Author(s):  
Qinghan Liang ◽  
Silvia Nittel ◽  
John C. Whittier ◽  
Sytze de Bruin

Sign in / Sign up

Export Citation Format

Share Document