Presentation of Rapid Temperature Change Using Spatially Divided Hot and Cold Stimuli

2013 ◽  
Vol 25 (3) ◽  
pp. 497-505 ◽  
Author(s):  
Katsunari Sato ◽  
◽  
Takashi Maeno

We propose a thermal display that presents a rapid temperature change using spatially divided hot and cold stimuli. The display exploits two characteristics of human thermal perception: spatial summation and the adapting temperature. Experimental results confirmed that users perceived separate individual thermal stimuli as a single stimulus because of spatial summation. Our thermal display successfully made the skin simultaneously more sensitive to both hot and cold stimuli by using spatially divided hot and cold stimuli, each of which separately adjusts the adapting temperature so that it enables users to perceive thermal sensation rapidly. The thermal display that we fabricated enabled users to perceive a different temperature sense by changing the temperature of hot and cold stimuli.

2021 ◽  
Vol 17 ◽  
pp. 174480692110136
Author(s):  
Matthew Isaacson ◽  
Mark A Hoon

Mouse behavioral assays have proven useful for the study of thermosensation, helping to identify receptors and circuits responsible for the transduction of thermal stimuli and information relay to the brain. However, these methods typically rely on observation of behavioral responses to various temperature stimuli to infer sensory ability and are often unable to disambiguate innocuous thermosensation from thermal nociception or to study thermosensory circuitry which do not produce easily detectable innate behavioral responses. Here we demonstrate a new testing apparatus capable of delivering small, rapid temperature change stimuli to the mouse’s skin, permitting the use of operant conditioning to train mice to recognize and report temperature change. Using this assay, mice that were trained to detect a large temperature change were found to generalize this learning to distinguish much smaller temperature changes across the entire range of innocuous temperatures tested. Mice with ablated TRPV1 and TRPM8 neuronal populations had reduced ability to discriminate temperature differences in the warm (>35°C) and cool (<30°C) ranges, respectively. Furthermore, mice that were trained to recognize temperature changes in only the cool, TRPM8-mediated temperature range did not generalize this learning in the warm, TRPV1-mediated range (and vice versa), suggesting that thermosensory information from the TRPM8- and TRPV1-neuronal populations are perceptually distinct.


Author(s):  
Sangchae Kim ◽  
Bharath Bethala ◽  
Simone Ghirlanda ◽  
Senthil N. Sambandam ◽  
Shekhar Bhansali

Magnetocaloric refrigeration is increasingly being explored as an alternative technology for cooling. This paper presents the design and fabrication of a micromachined magnetocaloric cooler. The cooler consists of fluidic microchannels (in a Si wafer), diffused temperature sensors, and a Gd5(Si2Ge2) magnetocaloric refrigeration element. A magnetic field of 1.5 T is applied using an electromagnet to change the entropy of the magnetocaloric element for different ambient temperature conditions ranging from 258 K to 280 K, and the results are discussed. The tests show a maximum temperature change of 7 K on the magnetocaloric element at 258 K. The experimental results co-relate well with the entropy change of the material.


1989 ◽  
Vol 62 (6) ◽  
pp. 1270-1279 ◽  
Author(s):  
D. D. Price ◽  
J. G. McHaffie ◽  
M. A. Larson

1. Psychophysical experiments were initiated to determine the possible influence of increasing stimulus size on perceived pain intensity. Six trained human subjects (5 male, 1 female) made visual analogue scale (VAS) ratings for pain-sensation intensity and unpleasantness in response to nociceptive thermal stimuli. Test stimuli consisted of 5-s duration heat pulses (45-50 degrees C in 1 degrees increments) delivered by one, two, or three contact thermal probes (1 cm2 each) applied to the medial aspect of the anterior forearm. 2. The area of skin receiving noxious thermal stimuli was changed by randomly varying the number of thermodes activated. The effects of varying the distance between the thermal probes also were evaluated. In the first series of experiments, thermal-probe separation was kept close to 0; in subsequent experimental series, the thermodes were separated by either 5 or 10 cm. 3. In each experimental series, considerable spatial summation occurred in both pain-sensation intensity and unpleasantness dimensions of pain. This summation occurred throughout the nociceptive thermal range of 45-50 degrees C and was larger at suprathreshold temperatures (greater than or equal to 47 degrees C) than those near threshold (less than or equal to 46 degrees C). Unlike spatial summation of perceived warmth, that of pain was not characterized by systematic changes in power-function exponents but as approximately upward parallel displacements in double-logarithmic coordinates. 4. Thermal-probe separation over a range of 0-10 cm had no effects on spatial summation of pain-sensation intensity or pain unpleasantness. In contrast, increasing thermal-probe separation increased the subjects' ability to discriminate differences in stimulus size and their ability to detect correctly the number of thermal probes activated. 5. Because affective VAS ratings of unpleasantness were linearly related to, but distinctly and systematically less than, VAS ratings of pain-sensation intensity, it was clear that subjects responded quite differently to these two pain dimensions. Affective judgements were not additionally influenced by thermal probe separation and hence by the ability to perceive stimulus size or number of thermal probes activated. 6. The results indicate that powerful spatial-summation mechanisms exist for heat-induced pain. Spatial summation of pain is likely to be subserved both by local integration mechanisms at the level of single spinothalamic-tract neurons and by recruitment of central nociceptive neurons, because spatial summation of pain occurred to approximately equal extents under conditions of thermode separations over a distance of at least 20 cm.


2019 ◽  
Vol 282 ◽  
pp. 02031
Author(s):  
Ricardo M.S.F. Almeida ◽  
Eva Barreira ◽  
Sandra Soares ◽  
Ramos Nuno M.M. ◽  
Sérgio Lopes ◽  
...  

The importance of a good indoor environment for peoples’ health and wellbeing is nowadays clearly established. Besides enhancing the wellbeing of building occupants and helping decrease the occurrence of building related illness, a good indoor environment can also lead to a decrease in worker complaints and absenteeism. This paper presents the results of a three-month monitoring campaign where the thermal comfort of a toll station was evaluated, including the main room and the cabins. The physical parameters required for the assessment of both global and local thermal comfort were measured and the results were compared with the thermal perception of the occupants, which was collected through questionnaires. The indoor environmental quality in the main room was better than in the cabins and a mismatch between the PMV index and the occupants thermal sensation was identified.


The collective electron theory of ferromagnetism is extended to include in the expression for the energy associated with the magnetization a term in the fourth power of the magnetization. A second adjustable parameter, similar to the kθ'/ϵ 0 of the Stoner treatment, is thus introduced. Detailed comparison with experiment of a number of properties of nickel, nickel-cobalt and nickel-copper alloys, is carried out. A high degree of co-ordination of the properties of nickel is obtained by a suitable choice of the two parameters, which are thereby determined within fairly close limits. The temperature variation of electronic specific heat and spontaneous magnetization of nickel is quantitatively covered, as is the magnetocaloric temperature change accompanying changes in external field. The spontaneous magnetization, temperature curves of cubic cobalt and four nickel-copper alloys are similarly covered, and a simple interpretation can be given of the adherence to the law of corresponding states of nickel-cobalt alloys and the deviation therefrom of the nickel-copper alloys. The model accounts qualitatively for the field-magnetization isothermals and for the variation of the magnetocaloric temperature change with magnetization. A detailed examination shows that the differences between theory and observation, where they exist, are due to effects not covered by the collective electron theory. The main discrepancies can be accounted for on the assumption that a small fraction of the volume of the material is made up of groups of atoms of varying size with a Langevin distribution of their magnetic axes. These groups may be called small domains. The problem is complicated by the fact that the field values computed theoretically are critically dependent on the parameters, of which a sufficiently close estimate cannot be made. However, for particular values of both kθ'/ϵ 0 and A a good fit with experiment over a wide temperature range is obtained when it is assumed that the domains are of sizes varying from 10 3 atoms upwards, the largest proportion of domains being of 10 4 to 10 5 atoms, and the volume occupied by such domains probably being much less than 10% of the total volume of material. It is shown that the hitherto unexplained large temperature variation, derived from the experimental results, in the value of —1/ σ (∂ E /∂ σ ) T corresponding to the Weiss molecular field coefficient, is an almost direct consequence of the basic physical premises of the collective electron treatment.


1999 ◽  
Vol 90 (4) ◽  
pp. 1129-1136 ◽  
Author(s):  
Olivier Gall ◽  
Didier Bouhassira ◽  
Djamel Chitour ◽  
Daniel Le Bars

Background Stimulus intensity is a major determinant of the antinociceptive activity of opiates. This study focused on the influence of the spatial characteristics of nociceptive stimuli, on opiate-induced depressions of nociceptive transmission at the level of the spinal cord. Methods Anesthetized rats were prepared to allow extracellular recordings to be made from convergent neurons in the lumbar dorsal horn. The effects of systemic morphine (1 and 10 mg/kg) were compared with those of saline for thermal stimuli of constant intensity, applied to the area of skin surrounding the excitatory receptive field (1.9 cm2) or to a much larger adjacent area (18 cm2). Results The responses (mean +/- SD) elicited by the 1.9-cm2 stimulus were not modified by 1 mg/kg intravenous morphine, although they were decreased by the 10-mg/kg dose (to 11+/-4% of control values compared with saline; P &lt; 0.05). In contrast, when the 18-cm2 stimulus was applied, 1 mg/kg intravenous morphine produced a paradoxical facilitation of the neuronal responses (159+/-36% of control values; P &lt; 0.05) and 10 mg/kg intravenous morphine resulted in a weaker depression of the responses (to 42+/-24% of control values; P &lt; 0.05) than was observed with the smaller stimulus. Conclusions Doses of systemic morphine in the analgesic range for rats had dual effects on nociceptive transmission at the level of the spinal cord, depending on the surface area that was stimulated. Such effects are difficult to explain in terms of accepted pharmacodynamic concepts and may reflect an opioid-induced depression of descending inhibitory influences triggered by spatial summation.


Sign in / Sign up

Export Citation Format

Share Document