scholarly journals An operant temperature sensory assay provides a means to assess thermal discrimination

2021 ◽  
Vol 17 ◽  
pp. 174480692110136
Author(s):  
Matthew Isaacson ◽  
Mark A Hoon

Mouse behavioral assays have proven useful for the study of thermosensation, helping to identify receptors and circuits responsible for the transduction of thermal stimuli and information relay to the brain. However, these methods typically rely on observation of behavioral responses to various temperature stimuli to infer sensory ability and are often unable to disambiguate innocuous thermosensation from thermal nociception or to study thermosensory circuitry which do not produce easily detectable innate behavioral responses. Here we demonstrate a new testing apparatus capable of delivering small, rapid temperature change stimuli to the mouse’s skin, permitting the use of operant conditioning to train mice to recognize and report temperature change. Using this assay, mice that were trained to detect a large temperature change were found to generalize this learning to distinguish much smaller temperature changes across the entire range of innocuous temperatures tested. Mice with ablated TRPV1 and TRPM8 neuronal populations had reduced ability to discriminate temperature differences in the warm (>35°C) and cool (<30°C) ranges, respectively. Furthermore, mice that were trained to recognize temperature changes in only the cool, TRPM8-mediated temperature range did not generalize this learning in the warm, TRPV1-mediated range (and vice versa), suggesting that thermosensory information from the TRPM8- and TRPV1-neuronal populations are perceptually distinct.

2013 ◽  
Vol 25 (3) ◽  
pp. 497-505 ◽  
Author(s):  
Katsunari Sato ◽  
◽  
Takashi Maeno

We propose a thermal display that presents a rapid temperature change using spatially divided hot and cold stimuli. The display exploits two characteristics of human thermal perception: spatial summation and the adapting temperature. Experimental results confirmed that users perceived separate individual thermal stimuli as a single stimulus because of spatial summation. Our thermal display successfully made the skin simultaneously more sensitive to both hot and cold stimuli by using spatially divided hot and cold stimuli, each of which separately adjusts the adapting temperature so that it enables users to perceive thermal sensation rapidly. The thermal display that we fabricated enabled users to perceive a different temperature sense by changing the temperature of hot and cold stimuli.


2021 ◽  
Author(s):  
Michael F Priest ◽  
Sara N Freda ◽  
Deanna Badong ◽  
Vasin Dumrongprechachan ◽  
Yevgenia Kozorovitskiy

Many neuronal populations that release fast-acting excitatory and inhibitory neurotransmitters in the brain also contain slower acting neuropeptides. These facultative peptidergic cell types are common, but it remains uncertain whether obligate peptidergic neurons exist. Our fluorescence in situ hybridization, genetically-targeted electron microscopy, and electrophysiological characterization data strongly suggest that neurons of the non-cholinergic, centrally-projecting Edinger-Westphal nucleus in mice are fundamentally obligately peptidergic. We further show, using fiber photometry, monosynaptic retrograde tracing, anterograde projection mapping, and a battery of behavioral assays, that this peptidergic population both promotes fear responses and analgesia and activates in response to loss of motor control and pain. Together, these findings elucidate an integrative, ethologically relevant function for the Edinger-Westphal nucleus and functionally align the nucleus with the periaqueductal gray, where it resides. This work advances our understanding of the peptidergic modulation of fear and provides a framework for future investigations of putative obligate peptidergic systems.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Aaron J Norris ◽  
Jordan R Shaker ◽  
Aaron L Cone ◽  
Imeh B Ndiokho ◽  
Michael R Bruchas

Maintaining stable body temperature through environmental thermal stressors requires detection of temperature changes, relay of information, and coordination of physiological and behavioral responses. Studies have implicated areas in the preoptic area of the hypothalamus (POA) and the parabrachial nucleus (PBN) as nodes in the thermosensory neural circuitry and indicate that the opioid system within the POA is vital in regulating body temperature. In the present study we identify neurons projecting to the POA from PBN expressing the opioid peptides dynorphin and enkephalin. Using mouse models, we determine that warm-activated PBN neuronal populations overlap with both prodynorphin (Pdyn) and proenkephalin (Penk) expressing PBN populations. Here we report that in the PBN Prodynorphin (Pdyn) and Proenkephalin (Penk) mRNA expressing neurons are partially overlapping subsets of a glutamatergic population expressing Solute carrier family 17 (Slc17a6) (VGLUT2). Using optogenetic approaches we selectively activate projections in the POA from PBN Pdyn, Penk, and VGLUT2 expressing neurons. Our findings demonstrate that Pdyn, Penk, and VGLUT2 expressing PBN neurons are critical for physiological and behavioral heat defense.


2020 ◽  
Author(s):  
Aaron J. Norris ◽  
Jordan R. Shaker ◽  
Aaron L. Cone ◽  
Imeh B. Ndiokho ◽  
Michael R Bruchas

SummaryMaintaining stable body temperature through environmental thermal stressors requires detection of temperature changes, relay of information, and coordination of physiological and behavioral responses. Studies have implicated areas in the preoptic hypothalamic area (POA) and the parabrachial nucleus (PBN) as nodes in the thermosensory neural circuitry and indicate the opioid system within the POA is vital in regulating body temperate. In the present study we identify neurons projecting to the POA from PBN expressing the opioid peptides Dynorphin (Dyn) and Enkephalin (Enk). We determine that warm-activated PBN neuronal populations overlap with both Dyn and Enk expressing PBN populations. We demonstrate that Dyn and Enk expressing neurons are partially overlapping subsets of a glutamatergic population in the PBN. Using optogenetic approaches we selectively activate projections in the POA from PBN Dyn, Enk, and VGLUT2 expressing neurons. Our findings demonstrate that Dyn, Enk, and VGLUT2 expressing PBN neurons are critical for physiological and behavioral heat defense.


2003 ◽  
Vol 86 (1-2) ◽  
pp. 139-156 ◽  
Author(s):  
Robin J. Rowbury

Biological thermometers are cellular components or structures which sense increasing temperatures, interaction of the thermometer and the thermal stress bringing about the switching-on of inducible responses, with gradually enhanced levels of response induction following gradually increasing temperatures. In enterobacteria, for studies of such thermometers, generally induction of heat shock protein (HSP) synthesis has been examined, with experimental studies aiming to establish (often indirectly) how the temperature changes which initiate HSP synthesis are sensed; numerous other processes and responses show graded induction as temperature is increased, and how the temperature changes which induce these are sensed is also of interest. Several classes of intracellular component and structure have been proposed as enterobacterial thermometers, with the ribosome and the DnaK chaperone being the most favoured, although for many of the proposed intracellular thermometers, most of the evidence for their functioning in this way is indirect. In contrast to the above, the studies reviewed here firmly establish that for four distinct stress responses, which are switched-on gradually as temperature increases, temperature changes are sensed by extracellular components (extracellular sensing components, ESCs) i.e. there is firm and direct evidence for the occurrence of extracellular thermometers. All four thermometers described here are proteins, which appear to be distinct and different from each other, and on sensing thermal stress are activated by it to four distinct extracellular induction components (EICs), which interact with receptors on the surface of organisms to induce the appropriate responses. It is predicted that many other temperature-induced processes, including the synthesis of HSPs, will be switched-on following the activation of similar extracellular thermometers by thermal stimuli.


2014 ◽  
Vol 5 (5) ◽  
pp. 371-382 ◽  
Author(s):  
Suyan Li ◽  
Sampada Joshee ◽  
Anju Vasudevan

AbstractMidbrain GABA neurons, endowed with multiple morphological, physiological and molecular characteristics as well as projection patterns are key players interacting with diverse regions of the brain and capable of modulating several aspects of behavior. The diversity of these GABA neuronal populations based on their location and function in the dorsal, medial or ventral midbrain has challenged efforts to rapidly uncover their developmental regulation. Here we review recent developments that are beginning to illuminate transcriptional control of GABA neurons in the embryonic midbrain (mesencephalon) and discuss its implications for understanding and treatment of neurological and psychiatric illnesses.


2005 ◽  
Vol 16 (03) ◽  
pp. 389-392 ◽  
Author(s):  
D. STAUFFER ◽  
H. ARNDT

Can unicellular organisms survive a drastic temperature change, and adapt to it after many generations? In simulations of the Penna model of biological aging, both extinction and adaptation were found for asexual and sexual reproduction as well as for parasex. These model investigations are the basis for the design of evolution experiments with heterotrophic flagellates.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Ippei Kotera ◽  
Nhat Anh Tran ◽  
Donald Fu ◽  
Jimmy HJ Kim ◽  
Jarlath Byrne Rodgers ◽  
...  

Understanding neural functions inevitably involves arguments traversing multiple levels of hierarchy in biological systems. However, finding new components or mechanisms of such systems is extremely time-consuming due to the low efficiency of currently available functional screening techniques. To overcome such obstacles, we utilize pan-neuronal calcium imaging to broadly screen the activity of the C. elegans nervous system in response to thermal stimuli. A single pass of the screening procedure can identify much of the previously reported thermosensory circuitry as well as identify several unreported thermosensory neurons. Among the newly discovered neural functions, we investigated in detail the role of the AWCOFF neuron in thermal nociception. Combining functional calcium imaging and behavioral assays, we show that AWCOFF is essential for avoidance behavior following noxious heat stimulation by modifying the forward-to-reversal behavioral transition rate. We also show that the AWCOFF signals adapt to repeated noxious thermal stimuli and quantify the corresponding behavioral adaptation.


2011 ◽  
Vol 11 (3) ◽  
pp. 9057-9081
Author(s):  
T. Kurtén ◽  
L. Zhou ◽  
R. Makkonen ◽  
J. Merikanto ◽  
P. Räisänen ◽  
...  

Abstract. The release of vast quantities of methane into the atmosphere as a result of clathrate destabilization is a potential mechanism for rapid amplification of global warming. Previous studies have calculated the enhanced warming based mainly on the radiative effect of the methane itself, with smaller contributions from the associated carbon dioxide or ozone increases. Here, we study the effect of strongly elevated methane (CH4) levels on oxidant and aerosol particle concentrations using a combination of chemistry-transport and general circulation models. A 10-fold increase in methane concentrations is predicted to significantly decrease hydroxyl radical (OH) concentrations, while moderately increasing ozone (O3). These changes lead to a 70% increase in the atmospheric lifetime of methane, and an 18% decrease in global mean cloud droplet number concentrations (CDNC). The CDNC change causes a radiative forcing that is comparable in magnitude to the longwave radiative forcing ("enhanced greenhouse effect") of the added methane. Together, the indirect CH4-O3 and CH4-OH-aerosol forcings could more than double the warming effect of large methane increases. Our findings may help explain the anomalously large temperature changes associated with historic methane releases.


Sign in / Sign up

Export Citation Format

Share Document