scholarly journals TECHNOLOGICAL PROVISION OF THE ACCURACY FOR THE THREAD FORM OF ROD PUMPS

Author(s):  
Ihor Yakovenko ◽  
Yurii Vasilevskyi ◽  
Yevheniia Basova ◽  
Milan Edl

Aspects of thread manufacturing used in downhole rod pumps are considered. Technological defects of distortion of lateral surfaces of a thread profile arising in the course of processing on CNC machines are described, and the factors which most influence formation of these defects are established. The influence of profile defects on the reliability of the threaded connection during the operation of rod pumps is analyzed, as well as the research on the dynamics and oscillations of machine systems is analyzed. With the performed analysis the mathematical model of real technological system in the course of machining process is created and investigated. The main technological factors that have the greatest influence on the occurrence of error in the shape of the thread surface are identified. With the help of software for analysis of dynamic systems, the necessarily calculations were performed and the behavior of the dynamic system in the process of forming the thread profile was considered. Based on the analysis of the obtained results, a system for managing the parameters of the technological process of threading and technological solutions formulated. The introduction of which had a positive impact on the stability of the machining process and reduce the frequency of the above defect.

2021 ◽  
Vol 110 ◽  
pp. 9-14
Author(s):  
Dumitru Bălă

In this paper, starting from recent data provided by the National Institute of Statistics, we analyze the tourism activity in Mehedinți County. We apply the regression method and analyze some models. We also compare the economic results with those of previous years. Also, in this paper we study the stability of dynamic systems with applications in economics. The stability study is done using the Leapunov function method. The originality of the paper consists in the way we choose the mathematical model in case of regression and in the way we choose the Leapunov function in case of dynamic systems in which we analyze stability.


Author(s):  
Olena Pikaliuk ◽  
◽  
Dmitry Kovalenko ◽  

One of the main criteria for economic development is the size of the public debt and its dynamics. The article considers the impact of public debt on the financial security of Ukraine. The views of scientists on the essence of public debt and financial security of the state are substantiated. An analysis of the dynamics and structure of public debt of Ukraine for 2014-2019. It is proved that one of the main criteria for economic development is the size of public debt and its dynamics. State budget deficit, attracting and using loans to cover it have led to the formation and significant growth of public debt in Ukraine. The volume of public debt indicates an increase in the debt security of the state, which is a component of financial security. Therefore, the issue of the impact of public debt on the financial security of Ukraine is becoming increasingly relevant. The constant growth and large amounts of debt make it necessary to study it, which will have a positive impact on economic processes that will ensure the stability of the financial system and enhance its security.


2020 ◽  
Vol 16 (3) ◽  
pp. 255-269
Author(s):  
Enrico Bozzo ◽  
Paolo Vidoni ◽  
Massimo Franceschet

AbstractWe study the stability of a time-aware version of the popular Massey method, previously introduced by Franceschet, M., E. Bozzo, and P. Vidoni. 2017. “The Temporalized Massey’s Method.” Journal of Quantitative Analysis in Sports 13: 37–48, for rating teams in sport competitions. To this end, we embed the temporal Massey method in the theory of time-varying averaging algorithms, which are dynamic systems mainly used in control theory for multi-agent coordination. We also introduce a parametric family of Massey-type methods and show that the original and time-aware Massey versions are, in some sense, particular instances of it. Finally, we discuss the key features of this general family of rating procedures, focusing on inferential and predictive issues and on sensitivity to upsets and modifications of the schedule.


1989 ◽  
Vol 111 (2) ◽  
pp. 187-193 ◽  
Author(s):  
C. Nataraj ◽  
H. D. Nelson

A new quantitative method of estimating steady state periodic behavior in nonlinear systems, based on the trigonometric collocation method, is outlined. A procedure is developed to analyze large rotor dynamic systems with nonlinear supports by the use of the above method in conjunction with Component Mode Synthesis. The algorithm discussed is seen to reduce the original problem to solving nonlinear algebraic equations in terms of only the coordinates associated with the nonlinear supports and is a big improvement over commonly used integration methods. The feasibility and advantages of the procedure so developed are illustrated with the help of an example of a typical rotor dynamic system with an uncentered squeeze film damper. Future work on the investigation of the stability of the periodic response so obtained is outlined.


2016 ◽  
Vol 693 ◽  
pp. 837-842
Author(s):  
Fu Yi Xia ◽  
Li Ming Xu ◽  
De Jin Hu

A novel principle of cup wheel grinding of rotating concave quadric surface was proposed. The mathematical model of machining process was established to prove the feasibility of precision grinding of rotating concave paraboloid based on the introduced principle. The conditions of non-interference grinding of concave paraboloid were mathematically derived. The processing range and its influence factors were discussed. The trajectory equation of abrasive particle was concluded. Finally, the math expressions of numerical controlled parameters was put forward in the process of grinding of the concave paraboloid.


2012 ◽  
Vol 2012 ◽  
pp. 1-13
Author(s):  
Ying Wang ◽  
Baodong Zheng ◽  
Chunrui Zhang

We establish some algebraic results on the zeros of some exponential polynomials and a real coefficient polynomial. Based on the basic theorem, we develop a decomposition technique to investigate the stability of two coupled systems and their discrete versions, that is, to find conditions under which all zeros of the exponential polynomials have negative real parts and the moduli of all roots of a real coefficient polynomial are less than 1.


2021 ◽  
Vol 17 (9) ◽  
pp. e1008964
Author(s):  
Magali Tournus ◽  
Miguel Escobedo ◽  
Wei-Feng Xue ◽  
Marie Doumic

The dynamics by which polymeric protein filaments divide in the presence of negligible growth, for example due to the depletion of free monomeric precursors, can be described by the universal mathematical equations of ‘pure fragmentation’. The rates of fragmentation reactions reflect the stability of the protein filaments towards breakage, which is of importance in biology and biomedicine for instance in governing the creation of amyloid seeds and the propagation of prions. Here, we devised from mathematical theory inversion formulae to recover the division rates and division kernel information from time dependent experimental measurements of filament size distribution. The numerical approach to systematically analyze the behaviour of pure fragmentation trajectories was also developed. We illustrate how these formulae can be used, provide some insights on their robustness, and show how they inform the design of experiments to measure fibril fragmentation dynamics. These advances are made possible by our central theoretical result on how the length distribution profile of the solution to the pure fragmentation equation aligns with a steady distribution profile for large times.


2020 ◽  
pp. 442-451
Author(s):  
А.V. Batig ◽  
A. Ya. Kuzyshyn

One of the most important problems that pose a serious threat to the functioning of railways is the problem of freight cars derailment. However, according to statistics, the number of cases of the derailments of freight cars in trains annually grows. Тo prevent such cases, the necessary preventive measures are developed, and to study the causes of their occurrence, a significant number of mathematical models, programs and software systems created by leading domestic and foreign scientists. Studies of such mathematical models by the authors of this work have led to the conclusion that they are not sufficiently detailed to the extent that it is necessary for analyze the reasons of its derailment. At the same time, an analysis of the causes of the rolling stock derailments on the railways of Ukraine over the past five years showed that in about 20 % of cases they are obvious, and in 7 % of cases they are not obvious and implicitly expressed. The study of such cases of rolling stock derailment during an official investigation by the railway and during forensic railway transport expertises requires the use of an improved mathematical model of a freight car, which would allow a quantitative assessment of the impact of its parameters and rail track on the conditions of railway accidents. Therefore, taking into account the main reasons that caused the occurrence of such railroad accidents over the last five years on the railways of Ukraine, the article selected the main directions for improving the mathematical model of a freight car, allowing to cover all the many factors (explicit and hidden) and identify the most significant ones regarding the circumstances of the derailment rolling stock off the track, established on the basis of a computer experiment. It is proposed in the mathematical model of a freight car to take into account the guiding force, the value of which is one of the main indicators of the stability of the rolling stock. The authors of the article noted that not taking into account the influence of the guiding forces on the dynamics of the freight car can lead to an erroneous determination of the reasons for the rolling stock derailment or even to the impossibility of establishing them.


Sign in / Sign up

Export Citation Format

Share Document