scholarly journals Analysis of dynamics of laminated glass composite panels with different glass curvature under impact loading

Author(s):  
Olha Ihorivna Sukhanova ◽  
Oleksiy Oleksandrovych Larin
2017 ◽  
Vol 150 ◽  
pp. 892-904 ◽  
Author(s):  
Zhi-Yu Wang ◽  
Yalong Shi ◽  
Qing-Yuan Wang ◽  
Yaoyong Wu ◽  
Mingde He

2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Xiaoqing Xu ◽  
Bohan Liu ◽  
Yibing Li

Polyvinyl butyral (PVB) laminated glass has been widely used as an important component of mechanical and construction materials. Cracks on PVB laminated glass are rich in impact information, which contribute to its impact resistance design. In this paper, a three-dimensional (3D) numerical simulation model describing PVB laminated glass under impact loading is firstly established and validated qualitatively and quantitatively compared with the corresponding experimental results recorded by the high-speed photography system. In the meantime, the extended finite element method (XFEM) is introduced to analyze the crack propagation mechanism of laminated glass based on dynamic stress intensity factors (DSIFs) and propagations of stress waves. Parametric studies are then carried out to investigate the influence of five critical parameters, that is, plate dimension, crack length, impact energy, glass properties, and PVB properties, on crack propagation characteristics of laminated glass. Results show that the interaction between crack tip and stress waves as well as the propagations of stress waves corresponds to the fluctuations of DSIFs at crack tip. Both the structure and material variables are proven to play a very important role in glass cracking DSIFs and thus govern the crack propagation behavior. Results may provide fundamental explanation to the basic crack propagation mechanism on radial cracks in PVB laminated glass under impact loading conditions, thus to instruct its impact design improvement.


Author(s):  
K. Väer ◽  
J. Anton ◽  
A. Klauson ◽  
M. Eerme ◽  
E. Õunapuu ◽  
...  

Purpose: Laminated glass composite panel (LGCP) with at least one flexible plastic/ viscoelastic interlayer is considered. The purpose of this paper is to determine the material properties of the constituents of LGCP required for accurate modelling of the laminated glass structures. Design/methodology/approach: The proposed approach includes the following three type of tests: non-destructive tests for determining mechanical properties of the glass layers (based on wave propagation), mechanical tests and finite element simulations for determining properties of the interlayers, measuring residual stresses in glass layers using novel methods and equipment (non-destructive, wave propagation based). Findings: Methodology and procedures for determining material properties of the LGCP. Research limitations/implications: Due to fact that the shear moduli of the viscoelastic interlayers and glass skin layers differs up to thousands times, the direct application of the classical sandwich theory may lead to inaccurate results. The layer wise plate theory with viscoelastic interlayer should be applied. In the case of layer wise theory, the material properties should be determined for each layer (not averaged properties for laminate only). Practical implications: The proposed approach allows to determine the properties of the LGCP components with high accuracy and form base for development of accurate plate model for modelling vibration, buckling and bending of the LGCP. The effect of the residual stresses is most commonly omitted in engineering applications. However, in the case of tempered glass the residual stresses are significant and have obviously impact on stress- strain behaviour of the laminated glass panel. Originality/value: Study consists of valuable parts, i.e. determining residual stresses in glass performed in cooperation with private company GlasStress Ltd. Special software and measuring equipment are developed. Further LGCP interlayer mechanical properties are tested experimentally and using simulation tools for design optimization purposes.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Luigi Biolzi ◽  
Antonio Bonati ◽  
Sara Cattaneo

The structural performance of cantilevered laminated glass plates for different glass thicknesses and interlayers is considered in this paper. Heat-strengthened and tempered glass plies and two different interlayer films were utilized. The response of laminated glass specimens is then evaluated under low-velocity hard and semirigid impacts. Experimental findings were simulated and discussed by means of finite element analyses. In particular, this discussion includes the evaluation of the influence that the fixed edge clamping technique (number of clamps, their size, and their stiffness) has on the stress distribution in the specimens.


Sign in / Sign up

Export Citation Format

Share Document