scholarly journals Design, characterisation, and digital linearisation of an ADC analogue front-end for gamma spectroscopy measurements

ACTA IMEKO ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 70
Author(s):  
Tomasz Kowalski ◽  
Gian Piero Gibiino ◽  
Jaroslaw Szewinski ◽  
Pawel Barmuta ◽  
Piotr Bartoszek ◽  
...  

<p class="Abstract">This work presents the design, experimental characterisation, and digital post-distortion (i.e., digital linearisation) of a MHz-range ADC analogue front-end prototype for a gamma radiation spectrometry system under development at the National Center for Nuclear Research (NCBJ) in Poland. The design accounts for the electrical response of the gamma particle detector in providing signal conditioning and ADC protection against high-voltage spikes due to occasional high-energy cosmic radiation, as well as proper ADC clocking. As the front-end inevitably introduces nonlinear distortion and dynamic effects, a characterisation is performed to quantify the actual performance in terms of Total Harmonic Distortion (THD) and Effective Number of Bits (ENOB). Thus, a digital linearisation based on both static and memory polynomial models is successfully applied by means of post-distortion processing, guaranteeing a substantial improvement in THD and ENOB, and demonstrating the effectiveness of the hardware/software method for gamma radiation spectrometers.  </p>

2018 ◽  
Vol 182 ◽  
pp. 02063 ◽  
Author(s):  
Vladimir Kekelidze ◽  
Alexander Kovalenko ◽  
Richard Lednicky ◽  
Victor Matveev ◽  
Igor Meshkov ◽  
...  

The NICA (Nuclotron-based Ion Collider fAcility) is the new international research facility under construction at the Joint Institute for Nuclear Research (JINR) in Dubna. The main targets of the facility are the following: 1) study of hot and dense baryonic matter at the energy range of the maximum baryonic density; 2) investigation of nucleon spin structure and polarization phenomena; 3) development of JINR accelerator facility for high energy physics research based on the new collider of relativistic ions from protons to gold and polarized protons and deuterons as well with the maximum collision energy of sqrt(sNN) ~11GeV (Au79+ +Au79+) and ~ 27 GeV (p+p). Two collider detector setups MPD and SPD are foreseen. The setup BM@N (Baryonic Matter at Nuclotron) is commissioned for data taken at the existing Nuclotron beam fixed target area. The MPD construction is in progress whereas the SPD is still at the beginning design stage. An average luminosity of the collider is expected at the level of 1027 cm-2 s-1 for Au (79+) and 1032 cm-2 s-1 for polarized protons at 27 GeV. The status of NICA design and construction work is briefly described below.


2013 ◽  
Vol 473 ◽  
pp. 50-53
Author(s):  
Jie Lin ◽  
Fei Yan Mu

A high accuracy BiCMOS sample and hold (S/H) circuit employed in the front end of a12bit 10 MS/s Pipeline ADC is presented. To reduce the nonlinearity error cause by the sampling switch, a signal dependent clock bootstrapping system is introduced. It is implemented using 0.6 um BiCMOS process. An 88.77 dB spurious-free dynamic range (SFDR), and a -105.20 dB total harmonic distortion (THD) are obtained.


2006 ◽  
Vol 38 (2) ◽  
pp. 131-138 ◽  
Author(s):  
K. Vojisavljevic ◽  
M. Zunic ◽  
G. Brankovic ◽  
T. Sreckovic

Microstructural properties of a commercial zinc oxide powder were modified by mechanical activation in a high-energy vibro-mill. The obtained powders were dry pressed and sintered at 1100?C for 2 h. The electrical properties of grain boundaries of obtained ZnO ceramics were studied using an ac impedance analyzer. For that purpose, the ac electrical response was measured in the temperature range from 23 to 240?C in order to determine the resistance and capacitance of grain boundaries. The activation energies of conduction were obtained using an Arrhenius equation. Donor densities were calculated from Mott-Schottky measurements. The influence of microstructure, types and concentrations of defects on electrical properties was discussed.


2014 ◽  
Vol 39 (2) ◽  
pp. 48-56
Author(s):  
Tadeo Baldiri Salcedo Rahola ◽  
Ad Straub ◽  
Angela Ruiz Lázaro ◽  
Yves Galiègue

The renovation of existing building stock is seen as one the most practical ways to achieve the high energy savings targets for the built environment defined by European authorities. In France, the Grenelle environmental legislation addresses the need to renovate the building stock and specifically stresses the key role of social housing organisations. In recent years, French procurement rules have been modified in order to allow social housing organisations to make use of integrated contracts such as Design-Build-Maintain. These contracts have a greater potential to deliver energy savings in renovation projects than do traditional project delivery methods, like Design-bid-Build. This is because they facilitate collaboration between the various actors and boost their commitment to the achievement of project goals. In order to evaluate the estimated potential of such contracts to achieve energy savings, two renovation projects (carried out by two French social housing organisations) were analysed from their inception until the end of construction work. The analysis is based on written tender documents, technical evaluation reports, observations of the negotiation phase (in one of the cases) and interviews with the main actors involved. Findings show that Design-Build-Maintain contracts do indeed offer substantial energy savings. Both projects achieved higher energy targets than those initially required. Furthermore, the energy results are guaranteed by the contractor, through a system of bonuses and penalties. Other results demonstrate that, compared to previous Design-bid-Build renovation projects, these projects were completed in less time (from project inception to completion of the work) and at virtually the same cost. There has also been a substantial improvement in cooperation between the actors involved.


2018 ◽  
Vol 191 ◽  
pp. 01003 ◽  
Author(s):  
Alexander Kovalenko ◽  
Vladimir Kekelidze ◽  
Richard Lednicky ◽  
Viktor Matveev ◽  
Igor Meshkov ◽  
...  

The NICA (Nuclotron-based Ion Collider fAcility) is the new international research facility under construction at the Joint Institute for Nuclear Research (JINR) in Dubna. The main targets of the facility are the following: 1) study of hot and dense baryonic matter at the energy range of the maximum baryonic density; 2) investigation of nucleon spin structure and polarization phenomena; 3) development of JINR accelerator facility for high energy physics research based on the new collider of relativistic ions from protons to gold and polarized protons and deuterons as well with the maximum collision energy of √SNN ~11GeV (Au79+ +Au79+) and ~ 27 GeV (p+p). Two collider detector setups MPD and SPD are foreseen. The setup BM@N (Baryonic Matter at Nuclotron) is commissioned for data taken at the existing Nuclotron beam fixed target area. The MPD construction is in progress whereas the SPD is still at the beginning design stage. An average luminosity of the collider is expected at the level of 1027 cm-2 s-1 for Au79+ and 1032 cm-2 s-1 for polarized protons at 27 GeV. The status of NICA design and construction work is briefly described below.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4284
Author(s):  
Damoon Soudbakhsh ◽  
Mehdi Gilaki ◽  
William Lynch ◽  
Peilin Zhang ◽  
Taeyoung Choi ◽  
...  

Lithium-ion batteries have found various modern applications due to their high energy density, long cycle life, and low self-discharge. However, increased use of these batteries has been accompanied by an increase in safety concerns, such as spontaneous fires or explosions due to impact or indentation. Mechanical damage to a battery cell is often enough reason to discard it. However, if an Electric Vehicle is involved in a crash, there is no means to visually inspect all the cells inside a pack, sometimes consisting of thousands of cells. Furthermore, there is no documented report on how mechanical damage may change the electrical response of a cell, which in turn can be used to detect damaged cells by the battery management system (BMS). In this research, we investigated the effects of mechanical deformation on electrical responses of Lithium-ion cells to understand what parameters in electrical response can be used to detect damage where cells cannot be visually inspected. We used charge-discharge cycling data, capacity fade measurement, and Electrochemical Impedance Spectroscopy (EIS) in combination with advanced modeling techniques. Our results indicate that many cell parameters may remain unchanged under moderate indentation, which makes detection of a damaged cell a challenging task for the battery pack and BMS designers.


1994 ◽  
Vol 421 ◽  
pp. 276 ◽  
Author(s):  
H. A. Mayer-Hasselwander ◽  
D. L. Bertsch ◽  
K. T. S. Brazier ◽  
J. Chiang ◽  
C. E. Fichtel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document