scholarly journals Status of NICA

2018 ◽  
Vol 182 ◽  
pp. 02063 ◽  
Author(s):  
Vladimir Kekelidze ◽  
Alexander Kovalenko ◽  
Richard Lednicky ◽  
Victor Matveev ◽  
Igor Meshkov ◽  
...  

The NICA (Nuclotron-based Ion Collider fAcility) is the new international research facility under construction at the Joint Institute for Nuclear Research (JINR) in Dubna. The main targets of the facility are the following: 1) study of hot and dense baryonic matter at the energy range of the maximum baryonic density; 2) investigation of nucleon spin structure and polarization phenomena; 3) development of JINR accelerator facility for high energy physics research based on the new collider of relativistic ions from protons to gold and polarized protons and deuterons as well with the maximum collision energy of sqrt(sNN) ~11GeV (Au79+ +Au79+) and ~ 27 GeV (p+p). Two collider detector setups MPD and SPD are foreseen. The setup BM@N (Baryonic Matter at Nuclotron) is commissioned for data taken at the existing Nuclotron beam fixed target area. The MPD construction is in progress whereas the SPD is still at the beginning design stage. An average luminosity of the collider is expected at the level of 1027 cm-2 s-1 for Au (79+) and 1032 cm-2 s-1 for polarized protons at 27 GeV. The status of NICA design and construction work is briefly described below.

2018 ◽  
Vol 191 ◽  
pp. 01003 ◽  
Author(s):  
Alexander Kovalenko ◽  
Vladimir Kekelidze ◽  
Richard Lednicky ◽  
Viktor Matveev ◽  
Igor Meshkov ◽  
...  

The NICA (Nuclotron-based Ion Collider fAcility) is the new international research facility under construction at the Joint Institute for Nuclear Research (JINR) in Dubna. The main targets of the facility are the following: 1) study of hot and dense baryonic matter at the energy range of the maximum baryonic density; 2) investigation of nucleon spin structure and polarization phenomena; 3) development of JINR accelerator facility for high energy physics research based on the new collider of relativistic ions from protons to gold and polarized protons and deuterons as well with the maximum collision energy of √SNN ~11GeV (Au79+ +Au79+) and ~ 27 GeV (p+p). Two collider detector setups MPD and SPD are foreseen. The setup BM@N (Baryonic Matter at Nuclotron) is commissioned for data taken at the existing Nuclotron beam fixed target area. The MPD construction is in progress whereas the SPD is still at the beginning design stage. An average luminosity of the collider is expected at the level of 1027 cm-2 s-1 for Au79+ and 1032 cm-2 s-1 for polarized protons at 27 GeV. The status of NICA design and construction work is briefly described below.


2019 ◽  
Vol 214 ◽  
pp. 08009 ◽  
Author(s):  
Matthias J. Schnepf ◽  
R. Florian von Cube ◽  
Max Fischer ◽  
Manuel Giffels ◽  
Christoph Heidecker ◽  
...  

Demand for computing resources in high energy physics (HEP) shows a highly dynamic behavior, while the provided resources by the Worldwide LHC Computing Grid (WLCG) remains static. It has become evident that opportunistic resources such as High Performance Computing (HPC) centers and commercial clouds are well suited to cover peak loads. However, the utilization of these resources gives rise to new levels of complexity, e.g. resources need to be managed highly dynamically and HEP applications require a very specific software environment usually not provided at opportunistic resources. Furthermore, aspects to consider are limitations in network bandwidth causing I/O-intensive workflows to run inefficiently. The key component to dynamically run HEP applications on opportunistic resources is the utilization of modern container and virtualization technologies. Based on these technologies, the Karlsruhe Institute of Technology (KIT) has developed ROCED, a resource manager to dynamically integrate and manage a variety of opportunistic resources. In combination with ROCED, HTCondor batch system acts as a powerful single entry point to all available computing resources, leading to a seamless and transparent integration of opportunistic resources into HEP computing. KIT is currently improving the resource management and job scheduling by focusing on I/O requirements of individual workflows, available network bandwidth as well as scalability. For these reasons, we are currently developing a new resource manager, called TARDIS. In this paper, we give an overview of the utilized technologies, the dynamic management, and integration of resources as well as the status of the I/O-based resource and job scheduling.


Particles ◽  
2020 ◽  
Vol 3 (2) ◽  
pp. 320-335
Author(s):  
Peter Senger

The future “Facility for Antiproton and Ion Research” (FAIR) is an accelerator-based international center for fundamental and applied research, which presently is under construction in Darmstadt, Germany. An important part of the program is devoted to questions related to astrophysics, including the origin of elements in the universe and the properties of strongly interacting matter under extreme conditions, which are relevant for our understanding of the structure of neutron stars and the dynamics of supernova explosions and neutron star mergers. The Compressed Baryonic Matter (CBM) experiment at FAIR is designed to measure promising observables in high-energy heavy-ion collisions, which are expected to be sensitive to the high-density equation-of-state (EOS) of nuclear matter and to new phases of Quantum Chromo Dynamics (QCD) matter at high densities. The CBM physics program, the relevant observables and the experimental setup will be discussed.


2015 ◽  
Vol 30 (31) ◽  
pp. 1546001 ◽  
Author(s):  
Matteo Cacciari

We review the history of jets in high energy physics, and describe in more detail the developments of the past ten years, discussing new algorithms for jet finding and their main characteristics, and summarising the status of perturbative calculations for jet cross sections in hadroproduction. We also describe the emergence of jet grooming and tagging techniques and their application to boosted jets analyses.


2021 ◽  
Vol 2021 (1) ◽  
pp. 5-24
Author(s):  
Anne Dippel

In the course of the digitalization of everyday life and the establishment of computer games as a popular cultural phenomenon, play as form and as practice has become a vital scientific topic, which begs for more in-depth cultural-anthropological reflection. This article approaches the ludic in a cultural-theoretical way via ethnographically collected data in the technologized working environments of high-energy physics at the European Centre for Nuclear Research (CERN). Grounded on participant observation of the entanglement of work and play, the article brings together established approaches as well as innovative developments in the field of play research. It demonstrates the capacity of ludic phenomena and theoretical concepts of play to advance fundamental modes of thinking in cultural anthropology. This work sees games and play as a crucial analytical perspective, which allows interpreting complex social processes anew.


2005 ◽  
Vol 20 (16) ◽  
pp. 3777-3782 ◽  
Author(s):  
IVAN VITEV

The status of RHIC theory and phenomenology is reviewed with an emphasis on the indications for the creation of a new deconfined state of matter. The critical role of high energy nuclear physics in the development of theoretical tools that address various aspects of the QCD many body dynamics is highlighted. The perspectives for studying nuclear matter under even more extreme conditions at the LHC and the overlap with high energy physics is discussed.


2019 ◽  
Vol 204 ◽  
pp. 10011
Author(s):  
Igor Sitnik

Deuteron breakup cross sections on the C and CH2 targets have been measured up to the proton internal momenta of 0.3 GeV/c. The cross-sections 12C(d, p)X and 1H(d, p)X reactions have been obtained with high precision. The obtained data are compared with previous measurements. The behavior features in the vicinity of the cross section maximum were studied in dependence on the transversal momentum in the region of 0.01 < pt < 0.16 GeV/c. The measurements have been performed at the Veksler Baldin Laboratory of High Energy Physics of the Joint Institute for Nuclear Research.


1994 ◽  
Vol 05 (05) ◽  
pp. 755-764 ◽  
Author(s):  
MARC DÖNSZELMANN

This report presents the status of the use of World-Wide Web (WWW) in High Energy Physics (HEP) experiments. The use of WWW in general, for ‘Online Datataking Systems’ and for ‘Offline Analysis Systems’ is discussed. In each of these cases the current use and a possible outlook for the future is described. Statistics on the actual use of WWW in HEP experiments as well as its current problems and future needs are also presented.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 678
Author(s):  
Patryk Chaber ◽  
Paweł D. Domański ◽  
Daniel Dąbrowski ◽  
Maciej Ławryńczuk ◽  
Robert Nebeluk ◽  
...  

The digital twins technology delivers a new degree of freedom into system implementation and maintenance practice. Using this approach, a technological system can be efficiently modeled and simulated. Furthermore, such a twin offline system can be efficiently used to investigate real system issues and improvement opportunities, e.g., improvement of the existing control system or development of a new one. This work describes the development of a control system using the digital twins methodology for a gas system delivering a specific mixture of gases to the time-of-flight (ToF) multipurpose detector (MPD) used during high-energy physics experiments in the Joint Institute for Nuclear Research (Dubna, Russia). The gas system digital twin was built using a test stand and further extended into target full-scale installation planned to be built in the near future. Therefore, conducted simulations are used to validate the existing system and to allow validation of the planned new system. Moreover, the gas system digital twin enables testing of new control opportunities, improving the operation of the target gas system.


Sign in / Sign up

Export Citation Format

Share Document